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Abstract 
Vaccination against infectious disease is hailed as one of the greatest public health 

achievements.  However, the United States Recommended Childhood Immunization 

Schedule is becoming increasingly complex, often requiring numerous separate injections in 

a single pediatric visit.  To address the issue of vaccine delivery complexity, vaccine 

manufacturers have developed combination vaccines that immunize against several diseases 

in a single injection.  These combination vaccines are creating challenges such as how these 

vaccines should be administered to ensure that immunity is safely achieved.  Furthermore, 

these vaccines are also creating a combinatorial explosion of alternatives and choices for 

public health policy-makers and administrators, pediatricians, and parents/guardians.   

This dissertation applies operations research methodologies to designing pediatric 

vaccine formularies that capture this combinatorial explosion of alternatives and choices and 

ensure that immunity is safely achieved.  In particular, the dissertation presents three 

fundamental problems for designing pediatric vaccine formularies.   

The first problem models a general childhood immunization schedule to design a 

vaccine formulary that minimizes the cost of fully immunizing a child.  The second problem 

models a general childhood immunization schedule to design a vaccine formulary that safely 

immunizes a child against several infectious diseases by restricting or limiting 

extraimmunization (i.e., extra doses of vaccine).  These problems are vitally important since 

the cost of vaccinating a child contributes to the underimmunization of children, and 

extraimmunization poses biological risks, amplifies philosophical concerns with vaccination, 

and creates an unnecessary economic burden on society.  These models are rigorously 

analyzed and several algorithms—both exact and heuristic—are presented.  Furthermore, a 

computational comparison of these algorithms is presented for the 2006 Recommended 

Childhood Immunization Schedule as well as several randomly generated childhood 

immunization schedules.  The third problem combines the first two problems by modeling a 

general childhood immunization schedule to design a vaccine formulary that minimizes the 

cost of fully immunizing a child while restricting or limiting extraimmunization.  The results 

reported here provide both fundamental insights to the operations research community as 

well as practical value for the public health community.    
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Chapter 1: Motivation and Introduction 
Infectious diseases have plagued humankind for centuries.  Even as recently as the early 20th 

century, infectious disease was the leading worldwide killer (Cohen 2000).  For example, in 

1900, the average life expectancy at birth in the United States was 47 years, with nearly thirty 

percent of all deaths caused by infectious disease.  Moreover, roughly one in ten children 

died before the age of four due to infectious diseases (Cohen 2000).   

By the end of the 20th century, the life expectancy in the United States increased to over 

76 years (National Vital Statistics Reports 2004).  Naturally, it is worth considering how life 

expectancy in this country has nearly doubled over the past century.  According to the World 

Health Organization (WHO), vaccinations and clean water have had the greatest impact on 

world health (Plotkin and Orenstein 2004).  As evidence to this claim, immunization spares 

millions of children each year from contracting infectious diseases (Cohen 2000, Diekema 

2005).  Moreover, the United States has witnessed a 100% decrease in the number of cases of 

indigenous poliomyelitis, and a 99% decrease in the number of cases of diphtheria, measles, 

mumps, and rubella since vaccines became available.  Furthermore, in 1966, there were an 

estimated 20M cases of smallpox worldwide, and because of vaccination, the WHO declared 

the eradication of this disease in 1980 (Mackay and Rosen 2001).  Today many healthcare 

professionals still regard the eradication of smallpox as one of the greatest accomplishments 

of public health (Cohen 2000, Mackay and Rosen 2001).  

In spite of this progress against infectious disease, much work still remains.  For 

example, in 1998, almost a quarter of the deaths worldwide (over 13M of the 54M deaths) 

were caused by infectious disease (Cohen 2000).  Unfortunately, an estimated 1M of these 

deaths were attributed to measles alone—a disease with a readily available vaccine at a 

relatively inexpensive cost of US$15 per dose (Cohen 2000, Plotkin and Orenstein 2004).  

The emergence of new infectious diseases such as human immunodeficiency virus (HIV) and 

Lyme disease, the resurgence of diseases such as tuberculosis, and the recent threat of 

bioterrorism (anthrax, smallpox, etc.) highlight the need for continued vigilance in the effort 

to combat infectious diseases (Binder et al. 1999, Plotkin and Orenstein 2004). 
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1.1 Pediatric Immunization in the United States 

The National Immunization Program (NIP) within the United States Centers for Disease 

Control and Prevention (CDC) is the federal agency responsible for overseeing pediatric 

immunization practice and policy.  Each year, based on recommendations from the Advisory 

Committee on Immunization Practices (ACIP) and the American Academy of Family 

Physicians (AAFP), the NIP publishes a Recommended Childhood Immunization Schedule 

that outlines vaccination requirements for children through adolescence (CDC 2006).  The 

Recommended Childhood Immunization Schedule (see Figure 1) outlines the vaccinations 

required to protect a child against several (currently thirteen) infectious diseases that pose a 

risk to children living in the United States.  This schedule includes the number of required 

doses of each vaccine and the recommended age for each dose (D1 = Dose 1, D2 = Dose 2, 

etc.).  For example, polio requires four doses of vaccine, where the third dose (D3) may be 

administered at age 6 months, 12 months, 15 months, or 18 months.  

TIME PERIOD (Age of Child) 
DISEASE 1 

(Birth) 
2 

(1 Mo) 
3 

(2 Mos) 
4 

(4 Mos) 
5 

(6 Mos) 
6 

(12 Mos) 
7 

(15 Mos) 
8 

(18 Mos) 
9 

(24 Mos) 
10 

(4-6 Yrs) 

Hepatitis B D1 D2  D3   
Diphtheria, 
Tetanus, Pertussis 

  D1 D2 D3  D4  D5 
Haemophilus 
influenzae type b 

  D1 D2 D3 D4    

Polio   D1 D2 D3  D4 
Measles, Mumps, 
Rubella 

     D1   D2 
Varicella      D1   

Pneumococcus   D1 D2 D3 D4    

Influenza     D1 (yearly) 
Hepatitis A      D1  D2   

Figure 1: United States 2006 Recommended Childhood Immunization Schedule through 
Age 6 (excluding recommendations for selected populations) 

Each vaccine dose is typically administered by injection during a scheduled well-baby 

check-up at a health care clinic.  For example, an infant child should receive a dose of 

vaccine for hepatitis B, diphtheria, tetanus, pertussis, Haemophilus influenzae type b, polio, 

and pneumococcus at their two-month well-baby check-up, resulting in as many as five 

injections.  Furthermore, a fifteen-month old child, under extreme conditions, could receive 

as many as eight injections in a single clinic visit.  These examples demonstrate that the 
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Recommended Childhood Immunization Schedule is becoming overly crowded and complex.  

Moreover, this situation will only worsen in the future as new diseases emerge and/or new 

vaccines are developed.  For example, four time periods and three diseases have been added 

to the Recommended Childhood Immunization Schedule since 1995, and there are currently 

several vaccine products being marketed and tested for use in children (CDC 1995, Cochi 

2005, Infectious Diseases in Children 2002).  These added complexities in the Recommended 

Childhood Immunization Schedule increase the likelihood that a parent/guardian will reject 

or delay some vaccinations.  The cost of vaccinating a child also contributes to the 

underimmunization of children—the opportunity cost of time for a parent/guardian to make 

clinic visits as well as the monetary cost of vaccination (Plotkin and Orenstein 2004).  These 

costs often contribute to either missed clinic visits or missed vaccine doses.  For example, the 

three year measles epidemic in the United States that began in 1990 involved 28,000 cases of 

measles, most of which were due to inadequate vaccination of these patients when they were 

one to two years of age (Mackay and Rosen 2001).  One estimate is that pediatric 

immunizations prevent three million worldwide deaths in children each year (Diekema 

2005), and hence, noncompliance to the Recommended Childhood Immunization Schedule 

puts children at risk of contracting potentially debilitating (and sometimes fatal) infectious 

diseases, thereby creating an enormous cost burden (both tangible and intangible) on the 

individual child, family, and society at large.  For example, the CDC’s 2005 National 

Immunization Survey estimates a savings of US$27 in direct and indirect costs for every 

dollar spent on vaccinating against diphtheria, tetanus, and pertussis (Cochi 2005).    

Weniger (1996) discusses several options that address the issues of vaccine injection 

overcrowding, schedule complexity, and the cost of vaccinating a child.  The most feasible 

option is the development and use of combination vaccines—a vaccine that combines several 

antigens (a substance that stimulates the production of an antibody, i.e., toxins, bacteria, 

foreign blood cells, and the cells of transplanted organs) into a single injection.  Some 

combination vaccines are already commonly used, such as the DTaP vaccine, which 

combines diphtheria and tetanus toxoids with acellular pertussis vaccine.  The ideal 

combination vaccine would combine antigens for every disease in the Recommended 

Childhood Immunization Schedule into a single vaccine, which could be administered at 

birth.  However, developing such a vaccine is highly unlikely based on financial and 
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biological constraints.  For example, live vaccines (vaccines that inject living antigens) can 

interfere with each other by competing for binding sites.  Nonetheless, several pediatric 

combination vaccines are now coming to market, and several more are being developed and 

tested for licensure in the United States (Infectious Diseases in Children 2002).  For example, 

Proquad®, a combination vaccine manufactured by Merck that immunizes against measles, 

mumps, rubella, and varicella, gained Food and Drug Administration (FDA) approval in 

September 2005.   

Combination vaccines will alleviate the issue of vaccine injection overcrowding and also 

offer economic opportunities by being more affordable per dose and reducing the shipping, 

handling, and storage costs of vaccines (Edwards and Decker 2001).  However, combination 

vaccines also pose several challenging questions, such as which antigens should be combined 

and how should these vaccines be administered to ensure that immunity is safely achieved 

and remains economically reasonable.  Moreover, combination vaccines offer pediatricians, 

public health policy-makers and administrators, and parents/guardians additional alternatives 

and choices on how to best immunize a child, and hence, these choices amplify the schedule 

complexity.  In fact, as the Recommended Childhood Immunization Schedule continually 

evolves, new combination vaccines will lead to a combinatorial explosion of alternatives and 

choices for such individuals, each with a different cost.  Therefore, determining the set of 

vaccines that minimize the cost of immunizing a child becomes more challenging. 

 Furthermore, combination vaccines increase the risk of extraimmunization.  

Extraimmunization means that a child receives antigens for a given disease over the 

recommended quantity and timing sequence.  Since combination vaccines reduce the number 

of required injections and may be more economical, pediatricians, public health policy-

makers and administrators, and parents/guardians will likely choose combination vaccines 

over multiple single antigen vaccines.  However, using combination vaccines may inject a 

child with antigens they have already received in the recommended quantity and timing 

sequence.  For example, injecting a child with a DTaP-HBV-IPV (diphtheria, tetanus, 

pertussis, hepatitis B, and polio) combination vaccine at age 4 months would provide 

extraimmunization for hepatitis B, since (according to Figure 1) no dose of vaccine is 

required at that age.  Such extraimmunization poses biological risks and amplifies 

philosophical concerns.  Biologically, extraimmunization of some antigens increases the risk 
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of adverse side effects.  Such is the case with diphtheria and tetanus vaccines (CDC 1999).  

Philosophically, many people challenge the safety and effectiveness of vaccinating children 

and particularly object to the use of combination vaccines, because they believe injecting a 

child with multiple antigens simultaneously overwhelms the infant immune system, and 

hence, extraimmunization due to combination vaccines only increases these fears (Edwards 

and Decker 2001, Chen et al. 2001).  This philosophical barrier to vaccination is an 

increasing concern for pediatricians and public health administrators.  For example, in a 

recent national survey of pediatricians, 54 percent had encountered parents over a 12-month 

period that refused to vaccinate their child, citing safety concerns as the top reason for this 

refusal (Flanagan-Klygis, Sharp and Frader 2005).  In another survey, 70 percent of 

pediatricians had encountered a parent in the 12 months preceding the survey that refused at 

least one immunization for their child (Diekema 2005).  In addition to these biological and 

philosophical concerns, the economic toll of extraimmunization is significant.  For example, 

the annual societal cost burden of providing one extra dose of vaccine for each child born in 

the United States is over $28 million, which assumes a birth rate of 11,100 births per day (see 

Jacobson, et al. 2006a, 2006b) and a vaccine cost of $7, both of which are conservative 

estimates, where the vaccine cost estimates the Federal contract purchase price of the least 

expensive pediatric vaccine (see CDC Vaccine Price List 2005). 

1.2 Dissertation Overview 

This dissertation addresses how vaccines can best be administered to ensure immunity is 

safely achieved at a reasonable cost by examining the issues of cost and extraimmunization, 

and is organized as follows.   

 Chapter 2 presents a literature review of earlier research where operations research 

techniques have been used to address pediatric immunization problems.  Other relevant 

topics related to this research are also discussed. 

Chapter 3 presents general models (formulated as a decision problem and as a discrete 

optimization problem) that determine the set of vaccines (i.e., a vaccine formulary) that 

should be used in a clinical environment to satisfy any given childhood immunization at 

minimum cost, rigorously explores the theoretical structure of these general models, and 

provides an extensive computational study.  Specifically, Chapter 3 presents the 
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computational complexity of the decision/discrete optimization problems, presents a 

description and analysis of several algorithms, both exact and heuristic, for solving the 

discrete optimization problem, and presents a computational comparison of these algorithms 

for the 2006 Recommended Childhood Immunization Schedule and several randomly 

generated childhood immunization schedules that may be representative of future childhood 

immunization schedules.   

 Chapter 4 presents general models (formulated as a decision problem and as a discrete 

optimization problem) that determine the set of vaccines (i.e., a vaccine formulary) that 

should be used in a clinical environment to satisfy any given childhood immunization 

schedule while restricting extraimmunization, rigorously explores the theoretical structure of 

this general model, and provides an extensive computational study.  Specifically, Chapter 4 

presents the computational complexity of the decision/discrete optimization problems, 

presents a description and analysis of several algorithms, both exact and heuristic, for solving 

the discrete optimization problem, and presents a computational comparison of these 

algorithms for the 2006 Recommended Childhood Immunization Schedule and several 

randomly generated childhood immunization schedules that may be representative of future 

childhood immunization schedules.  

 Chapter 5 extends the models presented in Chapters 3 and 4 by presenting general 

models (formulated as a decision problem and as a discrete optimization problem) that 

determine the set of vaccines (i.e., a vaccine formulary) that should be used in a clinical 

environment to satisfy any given childhood immunization schedule at minimum cost while 

also restricting extraimmunization.  Specifically, Chapter 5 presents the computational 

complexity of the decision/discrete optimization problems, presents several formulation 

extensions, and presents a description and analysis of several algorithms, both exact and 

heuristic, for solving the discrete optimization problem. 

This dissertation concludes with Chapter 6, which presents a brief conclusion along with 

several research extensions.         
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Chapter 2: Literature Review 
This chapter presents a literature review of earlier research where operations research 

techniques have been used to address pediatric immunization problems.  Other relevant 

topics related to this research are also discussed, such as specific decision problems and 

discrete optimization problems that are foundational to the research contained in this 

dissertation. 

2.1 Operations Research and Pediatric Immunization 

This section reviews the operations research literature as it applies to pediatric immunization.  

Operations research techniques have been used to address pediatric immunization problems; 

however, most of the research to date addresses the economics of pediatric vaccine formulary 

design, combination vaccine pricing, and vaccine wastage (Jacobson et al. 2003b, 2004).  

Weniger et al. (1998) report the results of a pilot study that uses operations research methods 

to assess the economic value of vaccine formularies—the set of vaccines inventoried by an 

immunization clinic or pediatrician.  Specifically, the Recommended Childhood 

Immunization Schedule for a subset of diseases (diphtheria, tetanus, pertussis, Haemophilus 

influenzae type b, and hepatitis B) and a reduced set of time periods (1mo, 2mo, 4mo, 6mo, 

12-18mo, and 60mo) were modeled as an integer program (IP).  The objective of this IP was 

to aide decision-makers in determining the vaccine formulary that minimized the cost to fully 

immunize a child against all five diseases.  They describe how the model may be used to 

determine the ‘best value’ to vaccine purchasers and briefly describe how operations research 

models might help determine the economic value of new vaccines being researched and 

developed.  Jacobson et al. (1999) present a more rigorous presentation of this pilot study and 

demonstrate how the model selects different vaccine formularies depending on the desired 

economic criteria.  For example, the model was evaluated under the economic criterion: 

minimum total cost, maximum total cost, and minimum total cost with all manufacturers 

represented.  McGuire (2003) performed a cost-effectiveness analysis to determine the price 

for new vaccines prior to the vaccine’s development.  This analysis showed that new vaccine 

prices should be considerably higher than prices that are currently paid for new vaccines. 
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 Sewell et al. (2001) embed the IP from the pilot study into a bisection algorithm (Burden 

and Faires 1997) to “reverse engineer” the maximum inclusion prices (the maximum price at 

which a vaccine remains part of the optimal vaccine formulary) of four combination vaccines 

not yet licensed in the United States (at the time of publication).  Sewell and Jacobson (2003) 

present a rigorous description of this study, including the complete IP model.  This study 

shows how operations research can provide beneficial economic analysis to the 

pharmaceutical companies that develop and manufacture vaccines (see Jacobson et al. 

(2003a, 2005) for additional applications of this bisection algorithm).  Jacobson and Sewell 

(2002) extended the bisection/IP algorithm approach by including it with Monte Carlo 

simulation, thereby determining a probability distribution for the price of the four potential 

combination vaccines.  Finally, Jacobson et al. (2006) uses a stochastic inventory model to 

analyze the CDC-proposed vaccine stockpile levels to determine their adequacy.  Given 

prespecified vaccination coverage rates, this analysis provides insight into what the pediatric 

vaccine stockpile levels should be and the amount of funding needed to achieve such levels. 

2.2 Other Topics of Interest 

This section presents other relevant topics related to this research such as specific decision 

problems and discrete optimization problems that are foundational to the research contained 

in this dissertation. 

 There are several decision problems and discrete optimization problems that are 

foundational to the models presented in this dissertation.  Specifically, the problems 

described here are used for the complexity results in Chapters 3 and 4 and motivate the 

algorithms and heuristics described throughout this dissertation.  

 The first decision problem, Minimum Cover, is taken from Garey and Johnson (1979) 

and is known to be NP-complete.  This problem is now formally stated. 

Minimum Cover (MC) 

Given: A collection C of subsets of a finite set S, and a positive integer K ≤ |C|. 

Question:  Does C contain a cover of size K or less for set S (i.e., a subset C’ ⊆ C with 

|C’| ≤ K such that every element of S belongs to at least one member of C’)? 
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In the literature, the corresponding optimization problem associated with Minimum Cover is 

the Set-Covering problem, where each subset in the collection C is assigned a weight (or 

cost) and a minimum weighted cover of S is sought (Nemhauser and Wolsey 1999).  The Set-

Covering problem is generally modeled as the following integer program 

  Minimize   ∑
=

n

j
jj xc

1

  Subject to   

           for all i œ S 1
1

≥∑
=

n

j
jij xa

      xj œ {0,1}     for all j œ C 

 where  

- cj is the weight (or cost) corresponding to subset j œ C  

- aij = 1(0) if element i œ S is contained (not contained) in subset j œ C 

- xj = 1(0) if, for subset j œ C, j œ C’ (j – C’) (i.e., xj  = 1 if subset j œ C is 

contained in the cover C’ for S, 0 otherwise). 

If the constraint for each i œ S is set to equality, then the problem is the Set-Partitioning 

problem (Nemhauser and Wolsey 1999).  See Caprara et al. (2000) and Hoffman and 

Padberg (2006) for a survery of algorithms and heuristics for the Set-Covering problem. 

 Another decision problem used for the complexity results in Chapters 3 and 4 is 3DM, 

which is also taken from Garey and Johnson (1979) and is known to be NP-complete.  This 

problem in now formally stated. 
3-Dimensional Matching (3DM) 

Given: Set M Œ W μ Y μ Z, where W, Y, and Z are disjoint sets each containing q 

elements.  Therefore, W = {w1,w2,…,wq}, Y = {y1,y2,…,yq}, Z = {z1,z2,…,zq}, and M = 

{m1,m2,…,mk} where mi = (w, y, z), i = 1,2,…,k, such that w œ W,  y œ Y,  and z œ Z.   

Question:  Does M contain a matching (i.e., does there exist a subset M’ Œ M such that 

|M’| = q and no two elements of M’ agree in any coordinates)? 

The next set of decision problems are variations of the Satisfiability problem (Garey and 

Johnson 1979).   The first two problems (3-SAT and 1-in-3 3-SAT) are taken from Garey and 

Johnson (1979) and are known to be NP-complete.  These problems are now formally stated. 
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3-Satisfiability (3-SAT) 

Given: A set of n Boolean variables (y1,y2,…,yn) and a collection of m clauses over the n 

Boolean variables (C1,C2,…,Cm) such that |Ci| = 3, i = 1,2,…,m. 

Question:  Are there values for the n Boolean variables such that each clause has at least 

one true literal?   

One-In-Three 3-Satisfiability (1-in-3 3-SAT) 

Given: A set of n Boolean variables (y1,y2,…,yn) and a collection of m clauses over the n 

Boolean variables (C1,C2,…,Cm) such that |Ci| = 3, i = 1,2,…,m. 

Question:  Are there values for the n Boolean variables such that each clause has exactly 

one true literal? 

The following decision problem is a variation of 1-in-3 3-SAT: 

One-In-Three 3-Satisfiability with 2-Satisfiability (1-in-3 3-SAT with 2-SAT) 

Given: A set of n Boolean variables (y1,y2,…,yn) and a collection of m+n clauses over the 

n Boolean variables (C1,C2,…,Cm+n) such that |Ci| = 3, i = 1,2,…,m, and |Ci| = 2, i = 

m+1,m+2,…,m+n where clause ))1(( kkkm yyC −∨=+ , k = 1,2,…,n. 

Question:  Are there values for the n Boolean variables such that each clause has exactly 

one true literal?  

Clearly, a transformation from 1-in-3 3-SAT to 1-in-3 3SAT with 2-SAT can be made in 

polynomial time.  Furthermore, 1-in-3 3-SAT has a solution if an only if 1-in-3 3-SAT with 

2-SAT has a solution, and hence, 1-in-3 3-SAT with 2-SAT is also NP-complete.  A similar 

variation of 3-SAT to 3-SAT with 2-SAT is possible. 

 In the literature, the corresponding optimization problem associated with Satisfiability is 

the MAX-SAT problem, where a Boolean variable assignment that maximizes the number of 

satisfied clauses is sought (Hochbaum 1997).  See Miltersen (2005) for a description of 

algorithms for Satisfiability and Asano and Williamson (2002) for heuristics and 

approximation algorithms for the MAX-SAT problem. 

 This dissertation uses principles and techniques from complexity theory (Garey and 

Johnson 1979), linear programming (Bazarra et al. 1990), dynamic programming and integer 

programming (Nemhauser and Wolsey 1999), approximation algorithms (Hochbaum 1997), 

and randomized algorithms (Motwani and Raghavan, 1995). 

10 



Chapter 3: The Vaccine Formulary Selection with 

Limited Budget Problem 
This chapter extends the research described in Chapter 2 by generalizing the model for any 

given childhood immunization schedule and by rigorously exploring the theoretical structure 

of this general model. An extensive computational study is also presented.   The chapter is 

organized as follows.  Section 3.1 presents general models (formulated as a decision problem 

and as a discrete optimization problem) that determine the set of vaccines (i.e., a vaccine 

formulary) that should be used in a clinical environment to satisfy any given childhood 

immunization schedule, and presents the terminology that is used throughout the dissertation.  

Section 3.2 presents the computational complexity of the decision/discrete optimization 

problems.  Section 3.3 presents a description and analysis of several algorithms, both exact 

and heuristic, for solving the discrete optimization problem.  Section 3.4 presents a 

computational comparison of these algorithms for the 2006 Recommended Childhood 

Immunization Schedule and several randomly generated childhood immunization schedules 

that may be representative of future childhood immunization schedules.   

3.1 Model Formulation and Terminology 

This section presents a model formulation for a decision problem and a discrete optimization 

problem used to design a vaccine formulary that addresses the cost of satisfying a given 

childhood immunization schedule.  Given a childhood immunization schedule, the decision 

problem, termed the Vaccine Formulary Selection with Limited Budget Problem (VFSLBP), 

asks whether it is possible to design a vaccine formulary within a specified budget.  This 

problem is now formally stated. 

Vaccine Formulary Selection with Limited Budget Problem (VFSLBP) 

Given: 

- A set of time periods, T = {1,2,…,t}, 

- a set of diseases, D = {1,2,…,d},  

- a set of vaccines V = {1,2,…,u}, available to be administered to immunize against the 

d diseases, 
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- the number of doses of a vaccine that must be administered for immunization against 

the d diseases,  n1,n2,…, nd, 

- the cost of each vaccine, c1,c2,…,cu, 

- a budget B, 

- a set of binary parameters that indicate which vaccines immunize against which 

diseases;  therefore, Ivd = 1 if vaccine v œ V  immunizes against disease d œ D, 0 

otherwise, 

- a set of binary parameters that indicate the set of time periods in which a particular 

dose of a vaccine may be administered to immunize against a disease; therefore, Pdjt 

= 1 if in time period t œ T, a vaccine may be administered to satisfy the jth dose, j = 

1,2,…,nd, requirement for disease d œ D, 0 otherwise,   

- a set of binary parameters that indicate the set of time periods in which a vaccine may 

be administered to satisfy any dose requirement against a disease; therefore, Qdt = 1 if 

in time period t œ T, a vaccine may be administered to satisfy any dose requirement 

against disease d œ D, 0 otherwise, (i.e., for any disease d œ D and time period t œ T, 

Qdt = 1 if and only if Pdjt = 1 for some dose j = 1,2,…,nd.), 

- a set of integer parameters that indicate the minimum number of doses of a vaccine 

required for disease d œ D through time period t œ T; denoted mdt.   

Question: Does there exist a set of vaccines from V that can be administered over the 

time periods in T such that these vaccines immunize against all the diseases in D, at a 

total cost no greater than B (i.e., do there exist values for the binary variables Xtv, t ∈ 

T, v ∈ V, where Xtv = 1 if vaccine v œ V is administered in time period t œ T, 0 

otherwise, and for the binary variables Udt, d ∈ D, t ∈ T, where Udt = 1 if any vaccine 

v œ V that immunizes against disease d œ D is administered in time period t œ T , 0 

otherwise, such that for all diseases d ∈ D, Σt∈TΣv∈V Pdjt Xtv Ivd > 1 for dose j = 

1,2,…,nd, Σt=1,2,…,t’ Qdt Udt >  for all time periods  t’tdm ′  œ T, and Σv∈V Qdt Xtv Ivd > Udt 

for all time periods t œ T ; and Σt∈TΣv∈V  cv Xtv < B)? 

 In the formulation of VFSLBP, the given sets and parameters equate to a childhood 

immunization schedule together with budget and vaccine cost information.  Unless otherwise 

stated, the phrase “childhood immunization schedule” refers to an arbitrary general 
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immunization schedule, whereas the phrase “Recommended Childhood Immunization 

Schedule” refers to the published CDC immunization schedule in Figure 1.  Furthermore, the 

doses for all diseases d œ D are assumed to be sequentially ordered, which means that for all 

doses j, k = 1,2,…,nd, j < k, there exists a time period t’ œ T such that Pdjt’ = 1 and Pdkt = 0 for 

all t < t’, t œ T.  Define the valency, denoted by Val(v), as the number of antigens contained 

in vaccine v œ V, and hence, Val(v) = Σd∈D Ivd.  Combination vaccines are often referred to as 

multivalent vaccines, or simply multivalents, because Val(v) > 2 when v œ V is a combination 

vaccine.  Furthermore, vaccine v œ V, where Val(v) = 1, 2, 3, 4, 5, or 6 is often referred to as 

a monovalent, bivalent, trivalent, tetravalent, pentavalent, or hexavalent vaccine, 

respectively.  In practice, the dose parameters, nd and mdt, and schedule parameters, Pdjt and 

Qdt, depend on biological constraints and are determined by the recommendations of the 

ACIP and AAFP (CDC 2002).  The cost parameter, cv, is a general parameter that quantifies 

the economic cost of vaccine v œ V.  For example, Weniger et al. (1998) considered the 

actual vaccine purchase price, the cost of preparing the vaccine by medical staff, and the cost 

of administration (needle/syringe, needle-free injections, or oral) for a given vaccine v œ V.  

The question in VFSLBP asks if there exists a vaccine formulary administered over the time 

periods in T that satisfies a given childhood immunization schedule and is within the given 

budget B (i.e., a variable assignment for the binary variables Xtv, for all time periods t ∈ T 

and vaccines v ∈ V, and Udt, for all diseases d ∈ D and time periods t ∈ T, that satisfies the 

per dose requirements (Σt∈TΣv∈V Pdjt Xtv Ivd > 1 for dose j = 1,2,…,nd) and total dosage 

requirements (Σt=1,2,…,t’ Qdt Udt >  for all time period t’ œ T and Σtdm ′ v∈V Qdt Xtv Ivd > Udt for 

all time periods t œ T ) for each disease d œ D, and the budget constraint (Σt∈TΣv∈V  cv Xtv < 

B)).  Therefore, VFSLBP permits extraimmunization (i.e., multiple vaccinations for disease d 

œ D in time period t œ T, or vaccinations for disease d œ D in time periods t œ T  when Pdjt = 

0 for all doses j = 1,2,…,nd).  Chapter 4 considers the case when extraimmunization is 

restricted. 

 This decision problem can be addressed by solving a discrete optimization problem.  

More specifically, the following binary integer program can be used to answer VFSLBP.  
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Integer Programming Model for Vaccine Formulary Selection with Limited Budget 

Problem (VFSLBP(O)) 

  Minimize  ∑ ∑∈ ∈Tt Vv tvv Xc            (O) 

  Subject to 

      ∑ ∑∈ ∈Tt Vv vdtvdjt IXP > 1     for all d œ D, j = 1,2,…,nd  (1) 

      ∑ = ',...,2,1 tt dtdtUQ >     for all d œ D, t’ œ T,  (2) tdm ′

      ∑ ∈Vv vdtvdt IXQ > Udt    for all d œ D, t œ T,  (3) 

      Xtv œ {0,1}       for all t œ T, v œ V,  (4) 

      Udt œ {0,1}       for all d œ D, t œ T,  (5) 

where sets T, D, and V, parameters {cv}, {nd}, {Pdjt}, {Ivd}, {Qdt}, and {mdt}, and variables 

{Xtv} and {Udt} are defined in VFSLBP. 

 The objective function (O) minimizes the total cost of the vaccine formulary subject to 

the dose requirements for each disease d œ D.  Therefore, if the minimum total cost is less 

than or equal to the specified budget B, then the answer to VFSLBP is “yes.”  Constraint (1) 

ensures that for each disease d œ D, at least one vaccine that provides immunization for 

disease d œ D is administered in some time period when dose j = 1,2,…,nd may be 

administered.  Constraint (2) and (3) guarantees that for each disease d œ D, at least mdt doses 

of a vaccine that immunize against disease d œ D are administered in the first t œ T time 

periods, while also ensuring that at most one dose requirement for disease d œ D is satisfied 

in time period t œ T.  Finally, constraints (4) and (5) are the binary requirements for each 

decision variable.   

To simplify the formulation of VFSLBP(O), define Tdj = {t œ T : Pdjt = 1} to be the set of 

time periods when dose j = 1,2,…,nd, may be administered for disease d œ D.  Unless 

otherwise stated, assume that for all diseases d œ D and doses j = 1,2,…, nd, the time periods 

in Tdj are consecutive.  A disease d œ D is defined to have mutually exclusive doses if Tdi ∩ 

Tdj = « for all i, j = 1,2,…,nd, i ≠ j (i.e., the sets Tdj, j = 1,2,…,nd are pairwise mutually 

exclusive), and hence, the set of time periods when dose j may be administered for disease d 

œ D does not overlap with the set of time periods when dose i may be administered for all i ≠ 

j.  For example, disease 1 in Figure 2 does not have mutually exclusive doses.  Note that 

constraints (2) and (3) are redundant for any disease d œ D with mutually exclusive doses.  
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Therefore, if every disease has mutually exclusive doses then VFSLBP(O) simplifies to the 

same objective function (O) with constraints (1) and (4) only.  This simplified problem is 

denoted by VFSLBP(O)-MED to signify the optimization model where each disease d œ D 

has mutually exclusive doses.  All of the diseases in the 2006 Recommended Childhood 

Immunization Schedule have mutually exclusive doses, though some diseases in past 

schedules did not have this property.  For example, hepatitis B did not have mutually 

exclusive doses in the 2005 Recommended Childhood Immunization Schedule (CDC 2005). 

TIME PERIOD 
DISEASE 1 2 3 4 5 6 7 8 

Dose 1  Dose 3 1 
 Dose 2     

2   Dose 1 Dose 2 Dose 3 
3      Dose 1 

Figure 2: Childhood Immunization Schedule without Mutually Exclusive Doses 

Example 1 

An example of the model parameters and formulations are now given for the childhood 

immunization schedule in Figure 2.  Specifically, T = {1,2,3,4,5,6,7,8}, D = {1,2,3}, and the 

dose vector n = (3,3,1), where the dth component of n corresponds to the dose requirement for 

disease d = 1,2,3.  Furthermore, the binary schedule parameters Pdjt and Qdt are: 

for disease d = 1, 

dose j = 1: Pdjt = 1(0) for time period t = 1,2,3(4,5,6,7,8), 

dose j = 2: Pdjt = 1(0) for time period t = 2,3,4(1,5,6,7,8), and 

dose j = 3; Pdjt = 1(0) for time period t = 5,6,7,8(1,2,3,4), and hence,  

Qdt = 1 for all time periods t = 1,2,…,8,  

for disease d = 2,  

dose j = 1: Pdjt = 1(0) for time period t = 3(1,2,4,5,6,7,8),  

dose j = 2: Pdjt = 1(0) for time period t = 4(1,2,3,5,6,7,8), and 

dose j = 3: Pdjt = 1(0) for time period t = 5,6,7,8(1,2,3,4), and hence,  

Qdt = 1(0) for time period t = 3,4,5,6,7,8(1,2), and 

for disease d = 3, 

 dose j = 1: Pdjt = 1(0) for time period t = 6,7,8(1,2,3,4,5), and hence, 

 Qdt = 1(0) for time period t = 6,7,8(1,2,3,4,5).   
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Finally, the minimum dose vectors for each disease d œ D are m1 = (0,0,1,2,2,2,2,3), m2 = 

(0,0,1,2,2,2,2,3), and m3 = (0,0,0,0,0,0,0,1), where mdt is the tth component, t = 1,2,…,8, of 

vector md for disease d = 1,2,3.   

Suppose V = {1 = {1}, 2 = {2}, 3 = {3}, 4 = {1,2,3}}, which implies the binary 

parameters Ivd: I1d = 1(0) for disease d = 1(2,3), I2d = 1(0) for disease d = 2(1,3), I3d = 1 for 

disease d = 3(1,2), and I4d = 1 for all diseases d = 1,2,3.  Therefore, each vaccine v œ V may 

be interpreted as the subset of diseases from the set D for which the vaccine provides 

immunization against.  Moreover, let c = (1,2,2,3) be the cost vector, where the vth 

component of c corresponds to the cost of vaccine v = 1,2,3,4, and let B = 9.  Therefore, 

VFSLBP asks: do there exist values for the binary variables Xtv, t ∈ T, v ∈ V, where Xtv = 1 if 

vaccine v œ V is administered in time period t œ T, 0 otherwise, and for binary variables Udt, 

d œ D, t œ T, where Udt = 1 if any vaccine v œ V that immunizes against disease d œ D is 

administered in time period t œ T , 0 otherwise, such that: 

for disease d = 1, 

 dose j = 1: 1343124211411 ≥+++++ XXXXXX , 

dose j = 2: 1444134312421 ≥+++++ XXXXXX ,  

dose j = 3: 18481747164615451 ≥+++++++ XXXXXXXX , and time period 

t = 1: , 011 ≥U

t = 2: , 01211 ≥+UU

t = 3: , 1131211 ≥++ UUU

t = 4: , 214131211 ≥+++ UUUU

t = 5: , 21514131211 ≥++++ UUUUU

t = 6: 2161514131211 ≥+++++ UUUUUU , 

t = 7: 217161514131211 ≥++++++ UUUUUUU , 

 t = 8: 31817161514131211 ≥+++++++ UUUUUUUU ,  

t = 1: , 111411 UXX ≥+

t = 2: , 122421 UXX ≥+

t = 3: , 133431 UXX ≥+

t = 4: , 144441 UXX ≥+
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t = 5: , 155451 UXX ≥+

t = 6: , 166461 UXX ≥+

t = 7: , 177471 UXX ≥+

 t = 8: , 188481 UXX ≥+

for disease d = 2, 

 dose j = 1: , 13432 ≥+ XX

dose j = 2: ,  14442 ≥+ XX

dose j = 3: 18482747264625452 ≥+++++++ XXXXXXXX , and time period 

t = 1: Q21 = 0 fl no constraint, 

t = 2: Q22 = 0 fl no constraint, 

t = 3: , 123 ≥U

t = 4: , 22423 ≥+UU

t = 5: , 2252423 ≥++ UUU

t = 6: , 226252423 ≥+++ UUUU

t = 7: , 22726252423 ≥++++ UUUUU

 t = 8: 3282726252423 ≥+++++ UUUUUU ,  

t = 1: Q21 = 0 fl no constraint, 

t = 2: Q22 = 0 fl no constraint, 

t = 3: , 233432 UXX ≥+

t = 4: , 244442 UXX ≥+

t = 5: , 255452 UXX ≥+

t = 6: , 266462 UXX ≥+

t = 7: , 277472 UXX ≥+

 t = 8: , and 288482 UXX ≥+

for disease d = 3,  

 dose j = 1: 1848374736463 ≥+++++ XXXXXX , and time period 

t = 1: Q31 = 0 fl no constraint, 

t = 2: Q32 = 0 fl no constraint, 

t = 3: Q33 = 0 fl no constraint, 
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t = 4: Q34 = 0 fl no constraint, 

t = 5: Q35 = 0 fl no constraint, 

t = 6: , 036 ≥U

t = 7: , 03736 ≥+UU

 t = 8: ,  1383736 ≥++ UUU

t = 1: Q31 = 0 fl no constraint, 

t = 2: Q32 = 0 fl no constraint, 

t = 3: Q33 = 0 fl no constraint, 

t = 4: Q34 = 0 fl no constraint, 

t = 5: Q35 = 0 fl no constraint, 

t = 6: , 366463 UXX ≥+

t = 7: , 377473 UXX ≥+

 t = 8: , and  388483 UXX ≥+

for budget B, 

 ? 9322
8

1
4

8

1
3

8

1
2

8

1
1 ≤+++ ∑∑∑∑

==== t
t

t
t

t
t

t
t XXXX

For diseases d = 2,3, note that the constraints Σt=1,2,…,t’ Qdt Udt >  for time periods t’tdm ′  

œ T and Σv∈V Qdt Xtv Ivd > Udt for time periods t œ T are redundant, since both diseases have 

mutually exclusive doses.  Therefore, the formulation for VFSLBP(O) (excluding redundant 

constraints) for this example is: 

Minimize   ∑∑∑∑
====

+++
8

1
4

8

1
3

8

1
2

8

1
1 322

t
t

t
t

t
t

t
t XXXX

Subject to 

   1343124211411 ≥+++++ XXXXXX  

1444134312421 ≥+++++ XXXXXX  

18481747164615451 ≥+++++++ XXXXXXXX  

   1131211 ≥++ UUU

214131211 ≥+++ UUUU  

    31817161514131211 ≥+++++++ UUUUUUUU   

111411 UXX ≥+  
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122421 UXX ≥+  

133431 UXX ≥+  

144441 UXX ≥+  

155451 UXX ≥+  

166461 UXX ≥+  

177471 UXX ≥+  

     188481 UXX ≥+

13432 ≥+ XX  

14442 ≥+ XX   

18482747264625452 ≥+++++++ XXXXXXXX  

1848374736463 ≥+++++ XXXXXX  

}1,0{∈tvX         for all t œ T, v œ V  

}1,0{1 ∈tU         for all t œ T.  Ñ  

3.2 Computational Complexity 

This section presents the computational complexity of VFSLBP and VFSLBP(O).  Not 

surprisingly, in the worst case, these problems are shown to be intractable.  There are, 

however, some special cases that are solvable in polynomial time.  Theorem 1 states that 

VFSLBP is NP-complete. 

THEOREM 1: VFSLBP is NP-complete in the strong sense. 

PROOF:  First, VFSLBP is in the class NP since given a set of guessed values for the binary 

variables Xtv, t œ T, v œ V, and Udt, d œ D, t œ T, Σt∈TΣv∈V Pdjt Xtv Ivd > 1 for all d œ D, j = 

1,2,…,nd, Σt=1,2,…,t’Qdt Udt > for all d œ D and t’'dtm  œ T, and Σv∈V Qdt Xtv Ivd > Udt for all d œ 

D and t œ T can all be checked in O(ut2d) time, and Σt∈TΣv∈V cv Xtv < B can be checked in 

O(ut) time. 

 To complete the proof, a polynomial transformation from Minimum Cover (MC) to 

VFSLBP is constructed.   

 Given an arbitrary instance of MC, define a particular instance of VFSLBP as follows:  

Set T = {1}, D = S, V = C, n1 = n2 = … = nd = 1, c1 = c2 = … = cu = 1, and B = K.  If d ∈ S is 

19 



in subset v ∈ C, set the binary parameters Ivd = 1 and 0 otherwise.  Lastly, Pdjt = 1, d ∈ D, j = 

1, t = 1, Qdt = 1, and mdt = 1 for d œ D, t = 1.  Clearly, this transformation can be done in 

polynomial time in the size of the arbitrary instance of MC. 

 It remains to show that a yes for the particular instance of VFSLBP implies a yes for the 

arbitrary instance MC, and a yes for the arbitrary instance MC implies a yes for the particular 

instance of VFSLBP. 

 Suppose the answer to the particular instance of VFSLBP is yes.  Then there exist values 

for the binary variables X1v, v œ V, such that Σv∈V X1v Ivd ≥ 1 for all d ∈ D, and Σv∈V X1v ≤ B. 

(The binary variables Udt, d œ D, t = 1 may be ignored, since Ud1 > 1 for all d œ D.)   The 

claim is that if X1v = 1, then the corresponding subset v ∈ C is part of a cover C’ ⊆ C for S (of 

size K or less).  Let C′ be the set of subsets of C corresponding to X1v = 1.  The first 

constraint ensures that for d ∈ S, there exists at least one subset C’ such that d ∈ C′.  The 

second constraint ensures that |C′| ≤ K.  Therefore, the answer to the arbitrary instance of MC 

is yes. 

 Now suppose the answer to the arbitrary instance of MC is yes.  Then there exists a set 

of K or fewer subsets C′ ⊆ C such that for all d ∈ S, d is in at least one element of C’.  Since 

each subset in C for the arbitrary instance of MC corresponds to a different vaccine for the 

particular instance of VFSLBP, set X1v = 1 if the corresponding subset is in C′, and zero 

otherwise.  Moreover, each element in S for the arbitrary instance of MC corresponds to a 

different disease for the particular instance of VFSLBP.  Therefore, for each d ∈ D, Σv∈V X1v 

Ivd computes the number of subsets in C’ that cover d ∈ S (for the MC instance), and hence, if 

C′ is a cover for S, then Σv∈V X1v Ivd ≥ 1 for all d ∈ D.  Furthermore, since |C′| ≤ K, then Σv∈V 

X1v ≤ B.  Therefore, the answer to the particular instance of VFSLBP is yes. 

 By definition, a problem P is NP-complete in the strong sense if there exists a 

polynomial p such that Pp is NP-complete, where Pp is the set of all instances I of P, such 

that Max[I] < p(Length[I]), where Max[I] represents the magnitude of the largest number 

occurring in the instance I and Length[I] represents the length of a “reasonable and concise” 

encoding of instance I (Garey and Johnson 1979).  This definition implies that VFSLBP is 

NP-complete in the strong sense if VFSLBP may be restricted so that Max[I] < M for some 

constant M and the restricted problem remains NP-complete.  Given an instance I of 
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VFSLBP, let Max[I] = t(maxd∈ D nd)(maxv∈V cv).  When VFSLBP is restricted by letting t = 

1, n1 = n2 = … = nd = 1, and c1 = c2 = … = cu = 1 as described in the transformation above, the 

problem becomes MC.  Therefore, Max[I] is bounded by a constant and the restricted 

VFSLBP is the NP-complete problem MC, and hence, VFSLBP is NP-complete in the strong 

sense.  † 

 The proof of Theorem 1 suggests several special cases of VFSLBP that remain NP-

complete.  Specifically, VFSLBP remains NP-complete when there exists only one time 

period (i.e., t = 1), when the vaccine costs are equal (i.e., cv = c for all vaccines v œ V), and 

when each disease requires only one dose of vaccine (i.e., nd = 1 for all diseases d œ D).  

Theorem 2 gives some additional special cases of VFSLBP that remain NP-complete. 

THEOREM 2:  The following special cases of VFSLBP are NP-complete: 

i) Only one vaccine exists (i.e., u  = 1 where Iud = 1 for all diseases d œ D), 

ii) The disease set has cardinality of at least three (i.e., d > 3), 

iii) Every vaccine is at least a trivalent vaccine (i.e., Val(v) > 3 for all 
vaccines v œ V).  

PROOF:  To show i), an alternative polynomial transformation from MC to VFSLBP is 

constructed, where V = {1}.   

Given an arbitrary instance of MC, define a particular instance of VFSLBP as follows:  

Set T = C, D = S, V = {1}, n1 = n2 = … = nd = 1, c1 = 1, and B = K.  Set the binary parameters 

Ivd = 1 for v = 1, d ∈ D.  Set, Pdjt = 1 for d œ D , j = 1, and t œ T if d œ S is in subset t œ C, 

and 0 otherwise.  Lastly, Qdt = mdt = 1 whenever Pd1t = 1, and 0 otherwise.  Clearly, this 

transformation is polynomial in the size of the arbitrary instance of MC. 

Suppose the answer to the particular instance of VFSLBP is yes.  Then there exist values 

for the binary variables Xt1, t œ T, such that Σt∈T Pdjt Xt1 ≥ 1 for all d ∈ D, j = 1, and Σt∈T Xt1 ≤ 

B.  (The constraints Σt∈T Pdjt Xt1 ≥ 1 for all d ∈ D, j = 1 imply the constraints with binary 

variables Udt, d œ D, t œ T, Σt’=1,2,…,t’ Qdt Udt ≤ mdt’  for all d œ D, t’ œ T, and Xt1 > Udt are also 

satisfied.)  The claim is that if Xt1 = 1, then the corresponding subset t ∈ C is part of a cover 

C’ ⊆ C for S (of size K or less).  Let C′ be the set of subsets of C corresponding to Xt1 = 1.  

The first constraint ensures that for d ∈ S, there exists at least one subset C’ such that d ∈ C′.  

The second constraint ensures that |C′| ≤ K.  Therefore, the answer to the arbitrary instance of 

MC is yes. 
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Now suppose the answer to the arbitrary instance of MC is yes.  Then there exists a set 

of K or fewer subsets C′ ⊆ C such that for all d ∈ S, d is in at least one element of C’.  Since 

each subset in C for the arbitrary instance of MC corresponds to a different time period for 

the particular instance of VFSLBP, set Xt1 = 1 if the corresponding subset is in C′, and zero 

otherwise.  Moreover, each element in S for the arbitrary instance of MC corresponds to a 

different disease for the particular instance of VFSLBP.  Therefore, for each d ∈ D, Σt∈T Pd1t 

Xt1 computes the number of subsets in C’ that cover d ∈ S (for the MC instance).  Thus if C′ 

is a cover for S, then Σt∈T Pd1t Xt1 = Σt∈T Qdt Xt1 ≥ 1 for all d ∈ D.  Furthermore, since |C′| ≤ K, 

then Σt∈T Xt1 ≤ B.  Therefore, the answer to the particular instance of VFSLBP is yes.  

To show ii) and iii), a polynomial transformation from 3DM to VFSLBP is constructed, 

where d  = 3 and V = {1} is a trivalent vaccine. 

Given an arbitrary instance of 3DM define a particular instance of VFSLBP as follows: 

set T = M, D = {1,2,3}, V = {1}, n1 = n2 = n3 = q, c1 = 1, and B = q.  Let the q elements in W, 

Y, and Z correspond to the doses of disease 1, 2, and 3, respectively.  Hence, w1 corresponds 

to the first dose of vaccine for disease 1, w2 corresponds to the second dose of vaccine for 

disease 1, and so forth through dose q.  Furthermore, since T = M, then the 3-tuple mi, i = 

1,2,...,k, corresponds to the ith time period.  Set the binary parameters I1d = 1 for all d ∈ D.  

Set P1jt = 1,  j = 1,2,…q, t = i = 1,2,…,k,  if element wj œ mi, 0 otherwise; likewise, P2jt = 1,  j 

= 1,2,…q, t = i = 1,2,…,k,  if element yj œ mi, 0 otherwise; and, finally, P3jt = 1, j = 1,2,…q, t 

= i = 1,2,…,k, if element zj œ mi, 0 otherwise.  Lastly, set Qdt = 1 for all d œ D and t œ T since 

in every time period some dose of vaccine v is permitted for disease d, and set mdt = 0 for all 

d œ D, t = 1,2,…,k-1, and mdt = q for d œ D, t = k.  Clearly, this transformation is polynomial 

in the size of the arbitrary instance of 3DM. 

Suppose the answer to the particular instance of VFSLBP is yes.  Then there exist values 

for the binary variables Xt1, t = 1,2,…,|M|, and Udt, d œ D, t œ T, such that  

∑∈Tt tdjt XP 1 > 1 for all d ∈ D, j = 1,2,..,q;       (1) 

∑∈Tt dtdtUQ > q for all d œ D;         (2) 

Xt1 > Udt  for all d œ D, t œ T;        (3) 

∑ ∑∈ ∈Tt Vv tv Xc 1 = ∑∈Tt tX 1 < q (since c1 = 1).       (4) 
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Observe that in any time period t, exactly one dose for each disease d ∈ D is permitted, 

that is, given d and t, Pdjt = 1 for some j = 1,2,…,q.  Therefore, constraints (2) and (3) imply 

Σt∈T Qdt Xt1 > q for all d œ D and becomes the single constraint Σt∈T Xt1 > q.  This observation 

along with constraint (4) (i.e., Σt∈T Xt1 < q) implies Σt∈T Xt1  = q, which also means constraints 

(1) are tight (i.e., Σt∈T Pdjt Xt1 = 1 for all d ∈ D, j = 1,2,..,q) or some dose would not be 

satisfied.  Hence, the constraints for this particular instance of VFSLBP become 

∑∈Tt tdjt XP 1 = 1  for all d ∈ D, j = 1,2,..,q;       (1’) 

∑∈Tt tX 1 = q.              (2’) 

The claim is that if Xt1 = 1, then the 3-tuple m ∈ M corresponding to time period t is part 

of the matching M’ ⊆ M.  Let M’ be the set of 3-tuples in M corresponding to Xt1 = 1.  

Constraints (1’) ensure there exists exactly one time period t œ T that vaccine 1 is 

administered to satisfy each dose requirement for every d œ D.  Since the jth dose corresponds 

to some element in wj œ W, yj œ Y, or zj œ Z, then exactly one m œ M’ contains element wj, yj, 

and zj.  This means that no two elements of M’ agree in any coordinate.  Constraint (2’) 

ensures that vaccine 1 is administered in exactly q time periods, and hence, |M’| = q.  

Therefore, the answer to the arbitrary instance of 3DM is yes. 

Now suppose the answer to the arbitrary instance of 3DM is yes.  Then there exists a 

matching M’ ⊆ M such that |M’| = q and no two elements of M’ agree in any coordinate.  

Since each 3-tuple in M for the arbitrary instance of 3DM corresponds to a different time 

period for the particular instance of VFSLBP, set Xt1 = 1 if the corresponding 3-tuple m is in 

M’, and zero otherwise.  Since M’ is a matching, then each element of W, Y, and Z exists in 

exactly one m œ M’, and hence, each dose for each disease is satisfied exactly once in the 

time period corresponding to m (i.e., Σt∈T Pdjt Xt1 = 1 for all d ∈ D, j = 1,2,…,q).  Moreover, 

|M’| = q, where no two elements of M’ agree in any coordinate implies that Σt∈T Qdt Xt1 = q 

for all d ∈ D, and hence, Σt∈T Pdjt Xt1 > 1 for all d ∈ D, j = 1,2,…,q; Σt∈T Qdt Xt1 > q for all d 

∈ D; and Σt∈T Xt1 < q.  Therefore, these values of Xt1 = 1 provide a yes answer to the 

particular instance of VFSLBP.  † 

 Theorems 1 and 2 imply VFSLBP remains NP-complete even when the sets T, D, and V, 

or when the dose (nd, d œ D) and cost (cv, v œ V) parameters are significantly restricted.  In 

addition, since VFSLBP is NP-complete, then the corresponding optimization problem 

23 



VFSLBP(O) is NP-hard.  Another facet to the complexity of VFSLBP lies in the flexibility of 

the childhood immunization schedule.  In general, VFSLBP becomes more difficult if the 

doses for each disease may be administered in several time periods (i.e., for a given disease d 

œ D and dose j = 1,2,…,nd, Pdjt = 1 for multiple time periods t œ T).  Define a childhood 

immunization schedule as tight if every required dose of vaccine for each disease d ∈ D may 

be administered in exactly one time period (i.e., for dose j = 1,2,…,nd and disease d ∈ D,  Pdjt 

= 1 for exactly one time period t œ T).   By definition, a tight schedule is less flexible.  A 

tight schedule also implies that all diseases d œ D have mutually exclusive doses, since dose j 

= 1,2,…,nd may be administered in exactly one time period, and hence, the time period t œ T 

when Pdjt = 1 is unique. 

 Special cases of VFSLBP(O) that are solvable in polynomial time occur when the 

valency of the vaccine set is limited to monovalent and bivalent vaccines, the schedule is 

tight, and when the number of diseases is less than three.  To see this, first consider 

limitations on the valency of the vaccine set.  Lemma 1 considers the case when all vaccines 

v œ V are monovalents. 

LEMMA 1:  If Val(v) = 1 for all vaccines v ∈ V, then VFSLBP(O) is solvable in O(tÿd+u) 

time and has a minimum total cost of  Σd∈D cd nd, where cd = min{cv : Ivd =1, v 

œ V} for each disease d ∈ D.    

PROOF: Each disease d œ D requires nd doses at cost cd = min{cv : Ivd = 1, v œ V}, which is 

the minimum cost of a vaccine v œ V that immunizes against disease d œ D.  Therefore, the 

minimum cost to satisfy a childhood immunization schedule is given by Σd∈D cd nd, and the 

optimal vaccine schedule may be found by looping through the set of time periods and 

diseases and administering dose j = 1,2, …,nd, in the first time period when Pdjt = 1.   † 

 Define the linear programming (LP) relaxation of VFSLBP(O)-MED as the LP with 

objective function (O) subject to constraints (1) in VFSLBP(O)-MED and with the relaxed 

variable constraint  0 < Xtv < 1 for all time periods t œ T and vaccines v œ V.  Theorem 3 

states a stronger result than Lemma 1 for VFSLBP(O)-MED when all vaccines v œ V are 

monovalents. 

THEOREM 3:  If Val(v) = 1 for all vaccines v œ V, then the LP relaxation of VFSLBP(O)-

MED yields a binary optimal solution.  
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PROOF:  This results assumes that the time periods where Pdjt  = 1 for all diseases d œ D, 

and doses j =1,2,…,nd, are consecutive.  This assumption holds in the 2006 Recommended 

Childhood Immunization Schedule, as well as all the randomly generated childhood 

immunization schedules presented in Section 3.4.   

Suppose for a given instance of VFSLBP(O)-MED that Val(v) = 1 for all vaccines v œ V.  

Consider the LP relaxation of VFSLBP(O)-MED and denote its constraint matrix by A.  If A 

is totally unimodular, then every basic feasible solution is integer, provided the right-hand-

side (rhs) vector is integer (Ahuja et al. 1993).  Clearly, the rhs vector in the LP relaxation of 

VFSLBP(O) is integer, and hence, it remains to show that A is indeed totally unimodular.   

By definition, A is totally unimodular if every square submatrix of A has determinant 0, 

1, or -1.  It is well known that A is totally unimodular if the non-zero elements in each row 

are in consecutive columns (known as the consecutive ones property).  Without loss of 

generality, assume that there is exactly one vaccine v œ V that provides immunization against 

each disease d œ D.  Furthermore, assume the columns of A are ordered according to the set 

V.  For example, the first t columns of A correspond to the decision variables associated with 

the first vaccine, (i.e., column t corresponds to decision variable Xt1), the second t columns 

of A correspond to the decision variables associated with the second vaccine, and so on.  

Now consider some disease d œ D, and let v œ V be a vaccine such that Ivd = 1.  Since 

Val(v) = 1, then the only non-zero entries in any row of A that corresponds to disease d œ D 

must be in the t consecutive columns corresponding to vaccine v œ V.  By assumption, the 

time periods when Pdjt = 1 for disease d œ D, dose j = 1,2,…,nd, are consecutive, and hence, 

the rows corresponding to each dose for disease d œ D have the consecutive ones property, 

which implies that A is totally unimodular.  † 

Theorem 3 also implies that VFSLBP(O)-MED is solvable in polynomial time when all 

vaccines v œ V are monovalents, since LP is solvable in polynomial time (Bazaraa et al. 

1990).  Moreover, Theorem 3 may be used to show that the heuristics presented in Section 

3.3 return the optimal solution when all vaccines v œ V are monovalents. 

 Given a tight childhood immunization schedule and a vaccine set composed of 

monovalent and bivalent vaccines, Lemma 2 yields a second polynomial time solvable 

special case of VFSLBP(O).   
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LEMMA 2:  Given a tight childhood immunization schedule, if Val(v) < 2 for all vaccines v 

∈ V, then VFSLBP(O) is solvable in O(tÿd2) time.    

PROOF:  Consider some time period t œ T.  Since the childhood immunization schedule is 

tight, if dose j for disease d œ D may be administered (i.e., Pdjt = 1), then it must be 

administered in time period t œ T.  Let Dt = {d œ D: Pdjt = 1 for some j = 1,2,…,nd} and Vt = 

{v œ V: Ivd = 1 and d œ Dt} for t œ T.  Therefore, time period t œ T yields a Set-Covering 

problem instance with base set Dt  and a weighted collection of subsets Vt with weights cv for 

each v œ Vt.  Since the Set-Covering problem is solvable in polynomial time when each 

subset in the collection of subsets has cardinality of at most two, then finding the optimal 

vaccine set in time period t œ T is solvable in polynomial time if each vaccine provides 

immunization for at most two diseases (i.e., monovalent and bivalent vaccines).  Applying 

this result for all time periods t œ T equates to at most t Set-Covering problem instances, all 

of which are solvable in polynomial time using a matching algorithm with O(d2) complexity 

(Garey and Johnson 1979).  Therefore, the overall complexity for this special case is O(t·d2). 

† 

 Lemmas 1 and 2 and Theorem 3 imply VFSLBP(O) is polynomial time solvable if the 

valency of the vaccine set is restricted and if the childhood immunization schedule is tight.  

Additionally, when d = 1, VFSLBP(O) is polynomial time solvable (i.e., O(t) time) since it is 

a special case of Lemma 1.  VFSLBP(O) is also polynomial time solvable when d = 2 using 

the dynamic programming algorithm presented in Section 3.3.1, since the subproblem solved 

at each stage of the dynamic program is a Set-Covering problem instance, which is 

polynomial time solvable when all vaccines are bivalents (Garey and Johnson 1979).  The 

complexity of VFSLBP(O) with a general disease set D, where all vaccines are bivalents, 

remains an open question.  However, a general instance of VFSLBP(O)-MED with bivalent 

vaccines is polynomial time solvable by transforming VFSLBP(O)-MED into a Set-Covering 

problem instance where each subset in the collection of subsets has cardinality of at most 

two.   

 Table 1 summarizes the complexity results for VFSLBP, with the following definitions 

corresponding to the listed parameters: 

n = the dosage requirement for each disease d œ D (i.e., nd = n for all d œ D), 

c = the cost for each vaccine v œ V (i.e., cv = c for all v œ V). 
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Table 1: Summary of Complexity Results for VFSLBP 

 Time 
Periods 

Diseases Vaccines # of Doses for 
each Disease 

Cost of 
Vaccines 

 S = T S = D S = V n = |S| c = |S| 
S = ∆ Undefined Undefined Infeasible Polynomial Polynomial 
|S| = 1 NP-hard Polynomial NP-hard NP-hard NP-hard 

|S| = 2 fl Polynomial fl fl fl 
|S| > 3  NP-hard    

3.3 Algorithms and Heuristics 

Given that VFSLBP(O) is NP-hard, even when significantly restricting the cardinality of the 

input sets, it is likely that a significant amount of computing effort will be needed to find the 

optimal vaccine formulary for a given childhood immunization schedule  Exact algorithms 

that guarantee optimality do exist for VFSLBP(O), but unless P = NP, these algorithms will 

always have a worst case complexity that is exponential in the size of the inputs.  Therefore, 

it is useful (even necessary) to design heuristics that do not guarantee optimality but execute 

in time that is polynomial in the size of the inputs.  This section discusses both exact 

algorithms and heuristics for VFSLBP(O).  Section 3.3.1 presents an exact dynamic 

programming algorithm for VFSLBP(O).  Section 3.3.2 presents two rounding heuristics 

(Rounding and MAX Rounding) for VFSLBP(O)-MED.  Section 3.3.3 presents a Primal-

Dual heuristic for VFSLBP(O)-MED.  Section 3.3.4 presents a Greedy heuristic for 

VFSLBP(O)-MED.  Lastly, Section 3.3.5 presents a MAX Rounding, Primal-Dual, and 

Greedy heuristic for VFSLBP(O).  The heuristics for VFSLBP(O)-MED are shown to be 

approximation algorithms, which provide an approximation bound on the cost of the heuristic 

solution. 

3.3.1 Dynamic Programming Algorithm 

In Section 3.1, VFSLBP(O) is modeled as a binary integer programming (IP) problem, and 

hence, may be solved using several well known integer optimization techniques (such as 

branch and bound; see Nemhauser and Wolsey 1999).  Another useful exact technique is 

dynamic programming (DP).  Sewell et al. (2005) formulate a specific DP algorithm to find 

the minimal cost vaccine formulary for the 2005 Recommended Childhood Immunization 

Schedule.  This section presents and analyzes a generalized DP algorithm for VFSLBP(O).   
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 Given the stated set of inputs for VFSLBP(O) (i.e., set of time periods T, set of diseases 

D, set of vaccines V, required number of doses nd for each d œ D, vaccine costs cv for each v 

œ V, and binary parameters P, Q,  and I), the DP algorithm solves VFSLBP(O) one period at 

a time beginning at the first time period (i.e., t = 1), and steps through each time period in T 

until t = t.  Therefore, the set T defines the stages of the DP algorithm.  In addition to the 

minimum dose parameter mdt, d œ D, t œ T, define Mdt as the maximum number of doses of a 

vaccine required for disease d œ D through time period t œ T. 

 Define a state in the DP algorithm as the number of doses of a vaccine that have been 

administered for each disease through time period t œ T.  Formally, a state in time period t œ 

T is a d-dimensional vector St = (St1,St2,…,Std), where Std is the number of doses of a vaccine 

that have been administered for disease d = 1,2,…,d, in time periods 1,2,…,t.  Therefore, the 

state space in time period t œ T is Wt = {St œ Zd : mdt < Std <  Mdt for all d œ D}, where Z 

denotes the set of all integers.  The decision in time period t œ T is which vaccines to 

administer that immunize against the diseases requiring vaccination in this time period (i.e., 

the binary decision variables Xtv), and is represented by the d-dimensional binary vector Yt = 

(Yt1,Yt2,…,Ytd), where Ytd = 1 implies Xtv = 1 for some vaccine v œ V that immunizes against 

disease d œ D  (i.e., Ivd = 1).  The decision space in time period t œ T is defined as Ft = {Yt œ 

Bd : 0 < Ytd <  Mdt – md(t-1) for all d œ D}, where B denotes the binary set {0,1}.  These states 

and decisions define the DP algorithm system dynamics:  St = St-1 + Yt.  Since Yt œ Ft is a 

binary vector, a state St œ Wt is accessible from state St-1 œ Wt-1 only if St – St-1 is also a binary 

vector.  Furthermore, Yt œ Ft being binary eliminates the necessity of the binary decision 

variables Udt, d œ D, t œ T, because the vaccines administered in time period t œ T satisfy at 

most one dose for a particular disease. 

 Given that Yt = St – St-1, then a transition from state St-1 œ Wt-1 to state St œ Wt  requires 

that a dose of vaccine be administered in time period t œ T for each disease in the set Dt = {d 

œ D : Ytd = 1}.  The sets Vt = {v œ V: Ivd = 1 and d œ Dt} (i.e., the set of vaccines that 

immunize against any disease that requires vaccination in time period t œ T) and Dt define a 

sub-instance of VFSLBP(O), where each such sub-instance is a Set-Covering problem 

instance, termed SCP(Yt), with base set Dt and the collection of subsets Vt (See the Appendix 

for a formal definition of the Set-Covering problem).  The specific Set-Covering problem 

instance for time period t œ T and decision Yt œ Ft is given by 
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SCP(Yt)  
Minimize  c

tv V∈∑ v Xtv       

   Subject to 
      X

tv V∈∑ tv  Ivd  > 1  for all d œ Dt,  

      Xtv œ {0,1}    for all v œ Vt     

 To characterize the cost of decision Yt œ Ft, which is the cost of transitioning from state 

St-1 œ Wt-1 in time period (t – 1) œ T to state St œ Wt in time period t œ T, define the one-period 

cost function Ct(St-1, Yt) as the cost of vaccination in time period t œ T given state St-1 œ Wt-1 

and decision Yt œ Ft.   Note, however, that this one-period cost in time period t œ T depends 

only on decision Yt œ Ft, and hence, the optimal value of SCP(Yt) = Ct(St-1, Yt) = Ct(Yt).  

Therefore, the optimal one-period cost over all possible decisions in time period t œ T is 

given by C
tt Φ∈ 

min
Y

t(Yt). 

 Define Zt(St) as the minimum cost of a vaccine formulary that immunizes against all 

diseases through time period t œ T subject to the number of required doses at the end of time 

period t œ T being equal to St œ Wt .  Therefore, the DP optimality equation is given by the 

recurrence relation 

Zt(St) = {C
ttttttt YSSSY +=Ω∈Φ∈ −−− 111 :, 

min t(Yt) + Zt-1(St-1)}. 

Furthermore, the optimal cost of the vaccine formulary that satisfies a given childhood 

immunization schedule is given by 

z* = Z
ττ Ω∈S

min t(St), 

where Wt  is the state space for the final time period t œ T.  The DP algorithm for 

VFSLBP(O) is now formally given. 

Dynamic Programming Algorithm for VFSLBP(O) 

Step 1. Initialize: 
a. Initial state, S0 ≠ 0 (the d-dimensional zero vector) 
b. Initial cost contribution, Z0(S0) ≠ 0 
c. Set md0, Md0 ≠ 0 for all d œ D 
d. Initial stage, t ≠ 1 

Step 2. Compute  Zt(St) = {C
ttttttt YSSSY +=Ω∈Φ∈ −−− 111 :, 

min t(Yt) + Zt-1(St-1)}                                

for each state St œ Wt. 
Step 3. If t < t, then t ≠ t + 1 and return to Step 2.  Else, stop and return z* = 

Z
ττ Ω∈S

min t(St). 
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Example 2 

This extends Example 1 for the childhood immunization schedule depicted in Figure 2.  

Recall the minimum dose vectors for each disease d œ D are m1 = (0,0,1,2,2,2,2,3), m2 = 

(0,0,1,2,2,2,2,3), and m3 = (0,0,0,0,0,0,0,1), where mdt is the tth component, t = 1,2,…,8, of 

vector md for disease d = 1,2,3.  Likewise, the maximum dose vectors for each disease d œ D 

are M1 = (1,2,2,2,3,3,3,3), M2 = (0,0,1,2,3,3,3,3), and M3 = (0,0,0,0,0,1,1,1), where Mdt is the 

tth component, t = 1,2,…,8, of vector Md for disease d = 1,2,3.  These parameters yield the 

following state and decision spaces:  

State Space for each Time Period  
W1 W2 W3 W4 W5 W6 W7 W8

{(0,0,0), {(0,0,0), {(1,1,0), {(2,2,0)} {(2,2,0), {(2,2,0), {(2,2,0), {(3,3,1)}
(1,0,0)} (1,0,0), (2,1,0)}   (2,3,0), (2,2,1), (2,2,1),   
  (2,0,0)}     (3,2,0), (2,3,0), (2,3,0),   
       (3,3,0)} (2,3,1), (2,3,1),   
         (3,2,0), (3,2,0),   
         (3,2,1), (3,2,1),   
         (3,3,0), (3,3,0),   
         (3,3,1)} (3,3,1)}   

Decision Space for each Time Period  
F1 F2 F3 F4 F5 F6 F7 F8

{(0,0,0), {(0,0,0), {(0,1,0), {(0,1,0), {(0,0,0), {(0,0,0), {(0,0,0), {(0,0,0), 
(1,0,0)} (1,0,0)} (1,1,0)} (1,1,0)} (0,1,0), (0,0,1), (0,0,1), (0,0,1), 
       (1,0,0), (0,1,0), (0,1,0), (0,1,0), 
        (1,1,0)} (0,1,1), (0,1,1), (0,1,1), 
          (1,0,0), (1,0,0), (1,0,0), 
          (1,0,1), (1,0,1), (1,0,1), 
          (1,1,0), (1,1,0), (1,1,0), 
          (1,1,1)} (1,1,1)} (1,1,1)}. 

 

Applying the DP algorithm, where W0 ={S0}= {(0,0,0)} and Z0(S0) = 0, implies for time 

period (stage): 

t = 1:  

Z1((0,0,0) = C1((0,0,0)) + Z0((0,0,0)) = 0 + 0 = 0 

Z1((1,0,0)) = C1((1,0,0)) + Z0((0,0,0))  = 1  + 0 = 1. 

Note that the value of C1((1,0,0)) = SCP((1,0,0)), which is the optimal value of the IP: 

Minimize  X11 + 3X13       

Subject to 
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     X11 + X13  > 1    

      X11, X13 œ {0,1}. 

The optimal value is 1 by letting X11 = 1 and X13 = 0.  Continuing to the next stage yields:  

t = 2: 

Z2((0,0,0)) = C2((0,0,0)) + Z1((0,0,0)) = 0 + 0 = 0 

Z2((1,0,0)) = min{C2((0,0,0)) + Z1((1,0,0)); C2((1,0,0)) + Z1((0,0,0))}  

    = min{0 + 1,1 + 0} = 1 

Z2((2,0,0)) = C2((1,0,0)) + Z1((1,0,0) = 1 + 1 = 2,   

t = 3: 

 Z3((1,1,0)) = min{C3((0,1,0) + Z2((1,0,0)); C3((1,1,0) + Z2((0,0,0))} 

    = min{2 + 1,3 + 0} = 3  

Z3((2,1,0)) = min{C3(0,1,0) + Z2((2,0,0)); C3((1,1,0)) + Z2((1,0,0))}  

      = min{2 + 2,3 + 1} = 4, 

t = 4: 

Z4((2,2,0)) = min{C4((1,1,0)) + Z3((1,1,0)); C4((0,1,0)) + Z3((2,1,0))} 

   = min{3 + 3,2 + 4} = 6, 

t = 5: 

Z5((2,2,0)) = C5((0,0,0)) + Z4((2,2,0)) = 0 + 6 = 6 

Z5((2,3,0)) = C5((0,1,0)) + Z4((2,2,0)) = 2 + 6 = 8 

Z5((3,2,0)) = C5((1,0,0)) + Z4((2,2,0)) = 1 + 6 = 7 

 Z5((3,3,0)) = C5((1,1,0)) + Z4((2,2,0)) = 3 + 6 = 9, 

t = 6: 

Z6((2,2,0)) = C6((0,0,0)) + Z5((2,2,0)) = 0 + 6 = 6 

Z6((2,2,1)) = C6((0,0,1)) + Z5((2,2,0)) = 2 + 6 = 8 

Z6((2,3,0)) = min{C6((0,0,0)) + Z5((2,3,0)); C6((0,1,0)) + Z5((2,2,0))}  

   = min{0 + 8,2 + 6} = 8 

Z6((3,2,0)) = min{C6((0,0,0)) + Z5((3,2,0)); C6((1,0,0)) + Z5((2,2,0))}  

   = min{0 + 7,1 + 6} = 7 

Z6((3,3,0)) = min{C6((0,0,0)) + Z5((3,3,0)); C6((1,0,0)) + Z5((2,3,0)); C6((1,1,0)) + 

Z5((2,2,0)); C6((0,1,0) + Z5((3,2,0))} = min{0 + 9,1 + 8,3 + 6,2 + 7} = 9 

Z6((2,3,1)) = min{C6((0,1,1)) + Z5((2,2,0)); C6((0,0,1)) + Z5((2,3,0))}  
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= min{3 + 6,2 + 8} = 9 

Z6((3,2,1)) = min{C6((1,0,1)) + Z5((2,2,0)); C6((0,0,1)) + Z5((3,2,0))}  

   = min{3 + 6,2 + 7} = 9 

Z6((3,3,1)) = min{C6((0,0,1) + Z5((3,3,0)); C6((1,0,1) + Z5((2,3,0)); C6((1,1,1) + 

Z5((2,2,0)); C6((0,1,1) + Z5((3,2,0))} = min{2 + 9,3 + 8,3 + 6,3 + 7} = 9, 

t = 7: 

Z7((2,2,0)) = C7((0,0,0)) + Z6((2,2,0)) = 0 + 6 = 6 

Z7((2,2,1)) = min{C7((0,0,1)) + Z6((2,2,0)); C7((0,0,0)) + Z6((2,2,1))} 

   = min{2 + 6,0 + 8} = 8 

Z7((2,3,0)) = min{C7((0,0,0)) + Z6((2,3,0));C7((0,1,0)) + Z6((2,2,0))}  

   = min{0 + 8,2 + 6} = 8 

Z7((3,2,0)) = min{C7((0,0,0)) + Z6((3,2,0));C7((1,0,0)) + Z6((2,2,0))}  

   = min{0 + 7,1 + 6} = 7 

Z7((3,3,0)) = min{C7((0,0,0)) + Z6((3,3,0)); C7((1,0,0)) + Z6((2,3,0)); C7((1,1,0)) + 

Z6((2,2,0)); C7((0,1,0) + Z6((3,2,0))} = min{0 + 9,1 + 8,3 + 6,2 + 7} = 9 

Z7((2,3,1)) = min{C7((0,1,1)) + Z6((2,2,0)); C7((0,0,1)) + Z6((2,3,0)); C7((0,1,0)) +                     

      Z6((2,2,1)); C7((0,0,0)) + Z6((2,3,1))} = min{3 + 6,2 + 8,2 + 8,0 + 9} = 9 

Z7((3,2,1)) = min{C7((1,0,1)) + Z6((2,2,0)); C7((0,0,1)) + Z6((3,2,0)); C7((1,0,0)) +  

                           Z6((2,2,1)); C7((0,0,0)) + Z6((3,2,1))} = min{3 + 6,2 + 7,1 + 8,0 + 9} = 9 

Z7((3,3,1)) = min{C7((0,0,1) + Z6((3,3,0)); C7((1,0,1) + Z6((2,3,0)); C7((1,1,1) + 

Z6((2,2,0)); C7((0,1,1) + Z6((3,2,0)); C7((1,1,0) + Z6((2,2,1)); C7((1,0,0) + 

Z6((2,3,1)); C7((0,1,0) + Z6((3,2,1)); C7((0,0,0) + Z6((3,3,1))}  

    = min{2 + 9,3 + 8,3 + 6,3 + 7,3 + 8,1 + 9,2 + 9,0 + 9} = 9, 

t = 8: 

Z8((3,3,1)) = min{C8((0,0,1) + Z7((3,3,0)); C8((1,0,1) + Z7((2,3,0)); C7((1,1,1) + 

Z7((2,2,0)); C8((0,1,1) + Z7((3,2,0)); C8((1,1,0) + Z7((2,2,1)); C8((1,0,0) + 

Z7((2,3,1)); C8((0,1,0) + Z7((3,2,1)); C8((0,0,0) + Z7((3,3,1))}  

    = min{2 + 9,3 + 8,3 + 6,3 + 7,3 + 8,1 + 9,2 + 9,0 + 9} = 9. 

Therefore, the minimum cost of satisfying the childhood immunization schedule in Figure 2 

is 9.  Furthermore, one feasible vaccination schedule (highlighted above) that yields this 

optimal cost is to administer vaccine v = 1 in time period t = 1 at a cost of 1, administer 
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vaccine v = 2 in time period t = 3 at a cost of 2, and then in time period t = 4, either 

administer the trivalent vaccine v = 4 or vaccines v = 1 and 2—either option is at a cost of 3.  

Finally, administer the trivalent vaccine v = 4 in time period t = 6 at a cost of 3.  Ñ 

To determine the complexity of this DP algorithm, suppose that the Set-Covering 

problem instance with d diseases and u vaccines can be solved in O(TSCP) time.  

Furthermore, define SMax to be the maximum number of possible states within any time 

period t œ T.  Each time period requires O((SMax)2ÿTSCP) time, and hence, with t time periods, 

the DP algorithm for VFSLBP(O) executes in O(t(SMax)2ÿTSCP) time.  Since the decision 

problem for Set-Covering is NP-complete in the strong sense (Garey and Johnson 1979), a 

polynomial (or even pseudo-polynomial) algorithm is unlikely to exist, unless P = NP.  The 

DP algorithm’s worst case complexity may be improved, however, since each Set-Covering 

problem instance SCP(Yt) depends only on the decision vector Yt œ Ft.  Therefore, the Set-

Covering problem instance for decision Yt œ Ft only needs to be solved once.  It can be 

shown that the complexity of solving for all possible decisions is O(ud2d).  This means that 

for each time period t œ T, the complexity of Step 2 becomes O(d(SMax)2), and hence, the DP 

algorithm has a O(td(SMax)2 + ud2d) worst case time complexity, which is a significant 

improvement when SMax is large.  To exploit this added efficiency, the implementation of the 

DP algorithm used for the computational analysis reported in Section 3.4 employs a ‘branch 

and remember’ recursive algorithm to find the optimal cost for each Set-Covering problem 

instance SCP(Yt).  Therefore, SCP(Yt) need only be computed once using the recursive 

algorithm Set-Cover.  Initially, the given set of diseases for Yt is Dt, and hence, D’ = Dt.    

Set-Cover(D’)    
If D’ = « then return 0 
If Set-Covering problem for D’ has been solved previously then return its optimal value 
Select a disease d œ D’ that requires immunization 
Let V’ = {v œ V: Ivd = 1} (the set of vaccines v œ V that immunize against disease d œ D’) 
Set BestCost = +¶ 
For each vaccine v œ V’  

Let D* = D’ \ {d œ D’: Ivd = 1} 
cost  = Set-Cover(D*)  (find the optimal cost to cover the set of diseases D*) 
If cost + cv < BestCost 

   BestCost = cost + cv
  Store BestCost for D’ (remember the optimal solution for the set of diseases D’) 

Return BestCost 
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 Despite its exponential worst case complexity run time, the DP algorithm offers several 

advantages, both theoretically and computationally.  First, this algorithm may be efficient in 

practice with the 2006 Recommended Childhood Immunization Schedule, since this schedule 

yields a reasonable state/decision space, and the SCP(Yt) instances in each time period t œ T 

are small (and, in many cases, are polynomial time solvable).  Second, the DP algorithm 

offers insight into the theoretical structure of VFSLBP.  For example, the fact that the DP 

algorithm yields Set-Covering problem instances in each time period allows one to exploit 

the theory and algorithms for Set-Covering.  Third, the structure of the DP algorithm is ideal 

for when a child has already been partially immunized and then reenters the healthcare 

system to complete the immunization schedule (this problem is termed the schedule 

completion problem).  Fourth, the structure of the DP algorithm makes it easier to impose 

restrictions that are schedule-specific by imposing such restrictions on each SCP(Yt) 

instance.  (See Sewell et al. (2005) for some of the restrictions that are specific to the 

Recommended Childhood Immunization Schedule.)  Lastly, the structure of the DP 

algorithm is well suited for solving VFSLBP(O) related problems that include some 

stochastic variation.  For example, during a given time period t œ T, a parent/guardian may 

refuse a particular dose of vaccine if the number of injections required is unreasonably high.  

Therefore, as each vaccine is administered, the probability that a parent/guardian refuses 

another injection increases (this problem is termed the balking problem). 

3.3.2 Rounding Heuristics 

The worst case complexity for the DP algorithm motivates the need for heuristics, which are 

computationally efficient and provide “good” solutions.  This section presents the Rounding 

and MAX Rounding heuristics for VFSLBP(O)-MED.  VFSLBP(O)-MED is first considered 

due to its simpler structure and its relation to the 2006 Recommended Childhood 

Immunization Schedule (all diseases have mutually exclusive doses).  Both Rounding and 

MAX Rounding are shown to be approximation algorithms, which, by definition, execute in 

polynomial time and provide an approximation bound on the cost of the heuristic solution 

(Hochbaum 1997).   

 The Rounding and MAX Rounding heuristics use the solution from a linear program (LP) 

to construct a feasible binary solution.  This technique has been applied to several other well 
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known discrete optimization problems (Hochbaum 1997).  Relaxing the binary constraint (4) 

for VFSLBP(O)-MED yields the LP relaxation 

Minimize ∑ ∑∈ ∈Tt Vv tvv Xc          

   Subject to 
   ∑ ∑∈ ∈Tt Vv vdtvdjt IXP > 1    for all d œ D, j = 1,2,…,nd   

      Xtv > 0       for all t œ T, v œ V.    

Denote the optimal objective function values of VFSLBP(O)-MED and its LP relaxation as 

zIP  and zLP, respectively, where zLP < zIP (since the feasible region of VFSLBP(O)-MED is 

contained in the feasible region of its LP relaxation).  Let  denote the optimal decision 

vector for the LP relaxation, and define a

*
LPX

d = )max)((
,...,2,1 djtTtnjvdVv PI

d
∈

=
∈ ΣΣ  for all diseases d œ D, 

which is the maximum number of non-zero columns in any row of the constraint matrix for 

VFSLBP(O)-MED corresponding to disease d œ D.  Furthermore, define a = a
Dd∈

max d.  The 

Rounding heuristic rounds each fractional variable in the decision vector  that is greater 

than the threshold value 1/a.  The Rounding heuristic is now formally given. 

*
LPX

Rounding Heuristic for VFSLBP(O)-MED  
Step 1. Solve the LP relaxation of VFSLBP(O)-MED  
Step 2. Xtv ≠ 0 for all t œ T and v œ V 
Step 3. For all t œ T and v œ V 

a. If *
tvLPX > 1/a, then Xtv ≠1 

Step 4. Compute and return Σt∈TΣv∈V   cv Xtv 
 

Example 3 

Consider the childhood immunization schedule displayed in Figure 3 together with the 

vaccine set V = {1 = {1}, 2 = {2}, 3 = {2,3}} and cost vector c = (2,4,4).  

 

 

 

TIME PERIOD 
DISEASE 1 2 3 4 

1 Dose 1 Dose 2 
2 Dose 1   Dose 2 
3  Dose 1  

Figure 3: Childhood Immunization Schedule with Mutually Exclusive Doses 
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 In this example, zLP = 16, and a feasible decision vector for  = (    

) that yields this optimal value is  = 

(1,

*
LPX ,,, ***

131211 LPLPLP XXX

********
4342413332312322

,,,,,,, LPLPLPLPLPLPLPLP XXXXXXXX *
LPX

6
5 , 6

1 ,0,0, 5
4 , 4

3 ,0, 5
1 , 4

1 , 3
2 , 3

1 ).  Furthermore, a = 4, and hence, the Rounding heuristic rounds 

all binary variables > ¼ yielding the binary assignment (1,1,0,0,0,1,1,0,0,1,1,1), which 

returns an objective function value of 22.  Ñ 

Lemma 3 establishes the feasibility of the solution returned by the Rounding heuristic.  

LEMMA 3:  The Rounding heuristic for VFSLBP(O)-MED returns a feasible binary solution 

X, (i.e., a decision vector that satisfies the childhood immunization schedule). 

PROOF: Suppose the Rounding heuristic does not produce a feasible solution that satisfies 

the childhood immunization schedule.  Then there exists some disease d œ D whose jth dose 

is not administered during some time period t œ T such that Pdjt = 1.  This implies that < 

1/a for all decision variables in the constraint corresponding to disease d œ D, dose j.  

However, by definition of a, there are at most a decision variables in this constraint.  

Therefore, for disease d œ D, dose j,  

*
tvLPX

vdLPTt Vv djt IXP
tv

*∑ ∑∈ ∈
 < a(1/a)  < 1, 

which violates the LP relaxation constraint for disease d œ D, dose j, but this is a 

contradiction, since could not be feasible. † *
LPX

Given that LP is solvable in polynomial time, it then follows that the Rounding heuristic 

executes in polynomial time.  Theorem 4 shows that the cost of the binary solution returned 

by the Rounding heuristic is guaranteed to be no worse than aÿ zIP.  

THEOREM 4: The Rounding heuristic is an a-approximation algorithm for VFSLBP(O)–

MED. 

PROOF: Clearly, the Rounding heuristic executes in polynomial time since LP executes in 

polynomial time.  It remains to show that Σt∈TΣv∈V  cv Xtv < aÿ zIP.  Observe that, 

∑ ∑∈ ∈Tt Vv tvv Xc  <  ∑ ∑∈ ∈Tt Vv LPv tv
Xc * a  (since  Xtv = 1 only if a *

tvLPX > 1) 

                                   =  a Σt∈TΣv∈V  cv 
*

tvLPX  
               = a ÿzLP 

         < a ÿzIP       (since zLP < zIP).  † 

36 



Theorem 4 implies some immediate corollaries for some special cases of VFSLBP(O)-MED.  

Corollary 1 considers a tight childhood immunization schedule such that there are at most 

two vaccines that immunize against each disease d œ D (i.e., Σv∈V Ivd < 2 for all diseases d œ 

D), and Corollary 2 gives an upper bound on a for a tight childhood immunization schedule 

and for an arbitrary childhood immunization schedule. 

COROLLARY 1:  Given a tight childhood immunization schedule, if Σv∈V Ivd < 2 for all 

diseases d œ D, then the Rounding heuristic is a 2-approximation 

algorithm for VFSLBP(O)-MED. 

PROOF: A tight childhood immunization schedule implies djtTtnj
P

d
∈

=
Σ

,...,2,1
max  = 1 for all diseases 

d œ D.  Moreover, Σv∈V Ivd < 2 for all diseases d œ D, and hence, ad = 
 )max)((

,...,2,1 djtTtnjvdVv PI
d

∈
=

∈ ΣΣ < 2 for all diseases d œ D.  Therefore, a = a
Dd∈

max d < 2.  † 

COROLLARY 2: Given a tight childhood immunization schedule, a < u for the Rounding 

heuristic, and given an arbitrary childhood immunization schedule, a < 

uÿt for the Rounding heuristic.  

PROOF: Given a tight childhood immunization schedule, djtTtnj
P

d
∈=

Σ
,...,2,1

max  = 1 for all diseases 

d œ D, which implies a = 
Dd∈

max )max)((
,...,2,1 djtTtnjvdVv PI

d
∈

=
∈ ΣΣ < u.  Moreover, for an arbitrary 

childhood immunization schedule, a = 
Dd∈

max )max)((
,...,2,1 djtTtnjvdVv PI

d
∈

=
∈ ΣΣ < uÿt.  † 

 If *
LPX  contains several fractional variables, then the Rounding heuristic tends to round 

too many variables to one, thereby yielding a very costly solution.   Instead of rounding all 

variables greater than or equal to the 1/a threshold, it seems reasonable to round only a few 

variables with large fractional values, since these variables are more likely to be one in the 

binary optimal solution.  The MAX Rounding heuristic limits the number of rounded 

variables by selecting the variables with large fractional values. 

 To present the MAX Rounding heuristic, some additional notation is required.  Define D 

= {(d, j): d œ D, j = 1,2,…,nd } to be the set of all diseases ordered by dose, where |D| = 

.  For all time periods t œ T and vaccines v œ V, define Cdd nδ
1=Σ tv = {(d, j) œ D: Ivd = 1 and 

Pdjt = 1}, which specifies the diseases and dose that vaccine v œ V immunizes against in time 

period t œ T.   Therefore, Ctv Œ D for all time periods t œ T and vaccines v œ V.  Furthermore, 

in the case when all diseases d œ D have mutually exclusive doses, at most one (d, j) œ D for 

all diseases d œ D is contained in any set Ctv since, for a given disease d œ D and time period 
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t œ T, Pdjt = 1 for at most one dose j = 1,2,…,nd, and hence, each set Ctv does not contain 

multiple doses for any disease d œ D.   Lastly, define ftv = for all time periods t œ T and 

vaccines v œ V, which specifies the value of vaccine v œ V in time period t œ T.  Therefore, 

the MAX Rounding heuristic limits the number of rounded variables by greedily selecting (at 

each iteration) the most valuable available vaccine v œ V that immunizes against the most 

disease doses (not yet covered) in time period t œ T (i.e., rounds the variable that 

maximizes ) until every disease dose (d, j) œ D is covered by some vaccine v œ V in 

time period t œ T.  The MAX Rounding heuristic is now formally given.  

*
tvLPX

*
tvLPX

|| tvtv Cf ⋅

MAX Rounding Heuristic for VFSLBP(O)-MED 
Step 1. Initialize: 

a. Solve the LP relaxation of VFSLBP(O)-MED  
b. ftv ≠ for all t œ T, v œ V such that *

tvLPX *
tvLPX > 1/a 

c. Xtv ≠ 0 for all t œ T and v œ V 
d. ≠ CtvĈ tv for all t œ T and v œ V 

Step 2. While C = ∫ D do U
}1:{ =tvXtv
tvC

a. (t’,v’) ≠ |  (select the non-empty set  with the largest 

fractional value times the number of disease doses covered by vaccine v œ 
V in time period t œ T)  

VvTt ∈∈ ,
maxarg ˆ| tvtv Cf ⋅ tvĈ

b. Xt’v’ ≠ 1  (administer vaccine v’ œ V in time period t’œ T) 
c. ≠ \  for all t œ T and v œ V (remove all the disease doses 

covered by vaccine v’œ V in time period t’ œ T from all remaining sets) 
tvĈ tvĈ ''

ˆ
vtC

Step 3. Compute and return Σt∈TΣv∈V   cv Xtv 
 

Example 4 

 Consider the childhood immunization schedule displayed in Figure 3 together with 

vaccine set V = {1 = {1}, 2 = {2}, 3 = {2,3}} and cost vector c = (2,4,4).  Here,  

D = {(1,1), (1,2), (2,1), (2,2), (3,1)}, and  

C11 = {(1,1)}, C12 = {(2,1)}, C13 = {(2,1)}, C21 = {(1,1)}, C22 = «, C23 = {(3,1)}, 

C31 = {(1,2)}, C32 = «, C33 = {(3,1)}, C41 = {(1,2)}, C42 = {(2,2)}, C43 = {(2,2)}. 

The MAX Rounding heuristic proceeds as follows: 

Step 1:     Initialize: 
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a. Solve the LP relaxation of VFSLBP(O)-MED.  From the previous 

example,  = (1,*
LPX 6

5 , 6
1 ,0,0, 5

4 , 4
3 ,0, 5

1 , 4
1 , 3

2 , 3
1 )   

b. = 1,  = 11f 12f 6
5 ,  = 23f 5

4 ,  = 31f 4
3 ,  = 41f 4

1 ,  = 42f 3
2 ,  = 43f 3

1    

c. Xtv = 0 for t = 1,2,3,4 and v = 1,2,3 

d. 11Ĉ  = {(1,1)},  = {(2,1)},  = {(2,1)},  = {(1,1)},  = {(3,1)}, 

 = {(1,2)},  = {(3,1)},  = {(1,2)},  = {(2,2)},  = {(2,2)} 

12Ĉ 13Ĉ 21Ĉ 23Ĉ

31Ĉ 33Ĉ 41Ĉ 42Ĉ 43Ĉ

Step 2(1): C = « since Xtv = 0 for all t œ T, v œ V, and hence 

a. (t’,v’)  =  = (1,1)   
VvTt ∈∈ ,

maxarg |ˆ| tvtv Cf ⋅

b. X11 = 1 

c. 11Ĉ  = «,  = {(2,1)},  = {(2,1)},  = «,  = {(3,1)},  = 

{(1,2)},  = {(3,1)},  = {(1,2)},  = {(2,2)},  = {(2,2)} 

12Ĉ 13Ĉ 21Ĉ 23Ĉ 31Ĉ

33Ĉ 41Ĉ 42Ĉ 43Ĉ

Step 2(2): C = {(1,1)} ∫ D 

a. (t’,v’)  =  =  (1,2) 
VvTt ∈∈ ,

maxarg |ˆ| tvtv Cf ⋅

b. X12 = 1 

c. 11Ĉ  = «,  = «,  = «,  = «,  = {(3,1)},  = {(1,2)},  = 

{(3,1)},  = {(1,2)},  = {(2,2)},  = {(2,2)} 

12Ĉ 13Ĉ 21Ĉ 23Ĉ 31Ĉ 33Ĉ

41Ĉ 42Ĉ 43Ĉ

Step 2(3): C = {(1,1), (2,1)} ∫ D 

a. (t’,v’)  =  =  (2,3) 
VvTt ∈∈ ,

maxarg |ˆ| tvtv Cf ⋅

b. X23 = 1 

c. 11Ĉ  = «,  = «,  = «,  = «,  = «,  = {(1,2)},  = «, 

 = {(1,2)},  = {(2,2)},  = {(2,2)} 

12Ĉ 13Ĉ 21Ĉ 23Ĉ 31Ĉ 33Ĉ

41Ĉ 42Ĉ 43Ĉ

Step 2(4): C = {(1,1), (2,1), (3,1)} ∫ D 

a. (t’,v’)  =  =  (3,1) 
VvTt ∈∈ ,

maxarg |ˆ| tvtv Cf ⋅

b. X31 = 1 

c. 11Ĉ  = «,  = «,  = «,  = «,  = «,  = «,  = «,  = «, 

 = {(2,2)},  = {(2,2)} 

12Ĉ 13Ĉ 21Ĉ 23Ĉ 31Ĉ 33Ĉ 41Ĉ

42Ĉ 43Ĉ

Step 2(5): C = {(1,1), (1,2), (2,1), (3,1)} ∫ D 
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a. (t’,v’)  =  =  (4,2) 
VvTt ∈∈ ,

maxarg |ˆ| tvtv Cf ⋅

b. X42 = 1 

c. 11Ĉ  = «,  = «,  = «,  = «,  = «,  = «,  = «,  = «, 

 = «,  = « 

12Ĉ 13Ĉ 21Ĉ 23Ĉ 31Ĉ 33Ĉ 41Ĉ

42Ĉ 43Ĉ

STOP since C = {(1,1), (1,2), (2,1), (2,2), (3,1)} = D and return 2X11 + 4X12 + 4X23 + 2X31 + 

4X42 = 16, which is the optimal cost.  Ñ  

The MAX Rounding heuristic executes in O(TLP + |D|tu) time, where TLP is the time 

required to solve the LP relaxation of VFSLBP(O)-MED.  Furthermore, the MAX Rounding 

heuristic returns a feasible solution, since every iteration of the while loop (i.e., Step 2) 

administers a vaccine that satisfies at least one dose requirement for some disease d œ D (i.e., 

every iteration covers at least one (d, j) œ D).  Moreover, the solution returned by the MAX 

Rounding heuristic can be no worse than the solution returned by the Rounding heuristic, and 

hence, the MAX Rounding heuristic is also an a-approximation algorithm for VFSLBP(O)-

MED. 

3.3.3 Primal-Dual Heuristic 

This section presents the Primal-Dual heuristic for VFSLBP(O)-MED.  In theory, a primal-

dual procedure begins with a dual feasible solution and then constructs a primal solution that 

satisfies the Karush-Kuhn-Tucker (KKT) complementary slackness optimality conditions 

(Bazarra et al. 1990).  If the constructed primal solution is feasible, then by the KKT 

conditions, it is also optimal.  Otherwise a new dual feasible solution is found such that at 

least one additional primal variable may take on a non-zero value (again satisfying the 

complementary slackness conditions), and hence, results in a new primal solution.  This 

process is repeated until the primal solution becomes feasible or the dual solution becomes 

unbounded, which would imply that the primal problem is infeasible (Bazaraa et al. 1990). 

The Primal-Dual heuristic uses the sets D = {(d, j): d œ D, j = 1,2,…,nd } and Ctv = {(d, j) 

œ D: Ivd = 1 and Pdjt = 1} for all time periods t œ T and vaccines v œ V, defined in Section 

3.3.2.  Observe that the set D together with the collection of sets Ctv, t œ T, v œ V, define a 

Set-Covering problem instance.  Therefore, the following results for the Primal-Dual 

heuristic (and the Greedy heuristic in Section 3.3.4) are closely related to the results for the 

Set-Covering problem (Hochbaum 1997, Nemhauser and Wolsey 1999). 
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 The LP relaxation of VFSLBP(O)-MED presented in Section 3.3.2 is in canonical form 

(i.e., min{cx:Ax > b, x > 0}), and hence, the dual of the LP relaxation is of the form 

max{yb:yA < c, y > 0} (Bazaraa et al. 1990).  Let be the dual variable corresponding to 

the constraint for disease d œ D and dose j = 1,2,…,n

),(̂ jdY

d in the LP-relaxation of VFSLBP(O)-

MED.  The Primal-Dual heuristic assigns the lowest cost available vaccine for disease d œ D 

and dose j = 1,2,…,nd, and then uses the vaccine cost to assign a value to the associated dual 

variable, .  This assignment forces at least one constraint in the dual of the LP relaxation 

of VFSLBP(O)-MED to become tight, which, by complementary slackness, allows the 

corresponding primal variable to be non-zero.  The Primal-Dual heuristic is now formally 

given. 

),(̂ jdY

Primal-Dual Heuristic for VFSLBP(O)-MED 
Step 1. Initialize: 

a. Xtv ≠ 0 for all t œ T and v œ V 
b.  for all (d, j) œ D 0ˆ

),( ←jdY

Step 2. While C =  ∫ D do  U
}1:{ =tvXtv
tvC

a. Select (at random) any (d, j) œ D such that (d, j) – C; denote this selection 
by (d’, j’) 

b. (t’,v’) ≠  (select set  with the smallest 

gap between the vaccine cost and the sum of all dual variables 
corresponding to the disease doses covered by vaccine v œ V in time 
period t œ T)  

tvCjdVvTt ∈∈∈ )','(:,
minarg

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

− ∑
∈ tvCjd

jdv Yc
),(

),(̂ tvC

c. Dt’v’ ≠ ∑
∈

−
''),(

),('
ˆ
vtCjd

jdv Yc  

d.  ≠ + D)','(̂ jdY )','(̂ jdY t’v’  (estimate dual variable corresponding to (d’, j’) œ D) 
e. Xt’v’ ≠ 1 (administer vaccine v’ œ V in time period t’ œ T) 

Step 3.  Compute and return Σt∈TΣv∈V   cv Xtv
 

Example 5 

Consider the childhood immunization schedule displayed in Figure 4 together with the 

vaccine set V = {1 = {1,3}, 2 = {1,2,3}} and cost vector c = (2,3).   

TIME PERIOD 
DISEASE 1 2 3 4 

1 Dose 1 Dose2 Dose 3 
2 Dose 1 Dose2 Dose 3  
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3 Dose 1 Dose2 Dose 3 
Figure 4: Childhood Immunization Schedule for Example 5 

Here,  

D = {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)}, and  

C11 = {(1,1), (3,1)}, C12 = {(1,1), (2,1), (3,1)}, C21 = {(1,2), (3,2)},  

C22 = {(1,2), (2,2), (3,2)}, C31 = {(1,3), (3,3)}, C32 = {(1,3), (2,3), (3,3)},  

C41 = {(1,3), (3,3)}, C42 = {(1,3), (3,3)}. 

The Primal-Dual heuristic proceeds as follows: 

Step 1:     Initialize:   

a. Xtv = 0 for t = 1,2,3,4 and v = 1,2 

b.  = 0 for all (d, j) œ D  ),(̂ jdY

Step 2(1): C = « since Xtv = 0 for all t œ T, v œ V, and hence 

a. Let (d’, j’) = (1,1) 

b. (t’,v’)  = {c
tvCVvTt ∈∈∈ (1,1):,

minarg 1 – 0, c2 – 0} = {2,3} = (1,1)   
tvCVvTt ∈∈∈ (1,1):,

minarg

c. D11 = 2 – 0 = 2 

d.  = + D)1,1(̂Y )1,1(̂Y 11 = 0 + 2 = 2 

e. X11 = 1 

Step 2(2): C = {(1,1), (3,1)} ∫ D 

a. Let (d’, j’) = (1,2) 

b. (t’,v’)  = {c
tvCVvTt ∈∈∈ (1,2):,

minarg 1 – 0, c2 – 0} = {2,3} = (2,1)   
tvCVvTt ∈∈∈ (1,2):,

minarg

c. D21 = 2 – 0 = 2 

d.  = + D)2,1(̂Y )2,1(̂Y 21 = 0 + 2 = 2 

e. X21 = 1 

Step 2(3): C = {(1,1), (1,2), (3,1), (3,2)} ∫ D 

a. Let (d’, j’) = (1,3) 

b. (t’,v’)  = {c
tvCVvTt ∈∈∈ (1,3):,

minarg 1 – 0, c2 – 0} = {2,3} = (3,1)   
tvCVvTt ∈∈∈ (1,3):,

minarg

c. D31 = 2 – 0 = 2 

d.  = + D)3,1(̂Y )3,1(̂Y 31 = 0 + 2 = 2 

e. X31 = 1 

Step 2(4): C = {(1,1), (1,2), (1,3), (3,1), (3,2), (3,3)} ∫ D 

42 



a. Let (d’, j’) = (2,1) 

b. (t’,v’)  = {c
tvCVvTt ∈∈∈ (2,1):,

minarg 2 – 2} = (1,2)   

c. D12 = 3 – 2 = 1 

d.  = + D)1,2(̂Y )1,2(̂Y 12 = 0 + 1 = 1 

e. X12 = 1 

Step 2(5): C = {(1,1), (1,2), (1,3), (2,1), (3,1), (3,2), (3,3)} ∫ D 

a. Let (d’, j’) = (2,2) 

b. (t’,v’)  = {c
tvCVvTt ∈∈∈ (2,2):,

minarg 2 – 2} = (2,2)   

c. D22 = 3 – 2 = 1 

d.  = + D)2,2(̂Y )2,2(̂Y 22 = 0 + 1 = 1 

e. X22 = 1 

Step 2(6): C = {(1,1), (1,2), (1,3), (2,1), (2,2), (3,1), (3,2), (3,3)} ∫ D 

a. Let (d’, j’) = (2,3) 

b. (t’,v’)  = {c
tvCVvTt ∈∈∈ (2,3):,

minarg 2 – 2} = (3,2)   

c. D32 = 3 – 2 = 1 

d.  = + D)3,2(̂Y )3,2(̂Y 32 = 0 + 1 = 1 

e. X32 = 1 

STOP since C = {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)} = D and return 2X11 

+ 2X21 + 2X31 + 3X12 + 3X22 + 3X32 = 15, which is sub-optimal.  The Primal-Dual heuristic 

returns the optimal solution if the order of selection in Step 2a is (d’, j’) = (2,1), followed by 

(d’, j’) = (2,2), followed by (d’, j’) = (2,3).  Ñ 

The Primal-Dual heuristic executes in O(|D|tu) time, and returns a feasible solution, 

since every iteration of the while loop (i.e., Step 2) administers a vaccine that satisfies at least 

one dose requirement for some disease d œ D (i.e., every iteration covers at least one (d, j) œ 

D).  Lemma 4 shows that the Primal-Dual heuristic constructs a feasible solution for the dual 

of the LP relaxation of VFSLBP(O)-MED. 

LEMMA 4:  The Primal-Dual heuristic constructs a feasible solution Y for the dual of the 

LP relaxation of VFSLBP(O)-MED. 

ˆ
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PROOF: This is shown by induction on the while loop in Step 2 where the values for the dual 

variables are assigned.  Initially, all the dual variables are set to zero, and hence, the base 

case is trivial since,  

∑
∈ tvCjd

jdY
),(

),(̂ = 0 < cv for all t œ T, v œ V. 

In the induction step, assume that on iteration m of the while loop,  

∑
∈ tvCjd

jdY
),(

),(̂ < cv for all t œ T, v œ V. 

Now consider iteration m + 1 of the while loop.  During this iteration, only one dual variable 

is changed (namely, ).  Therefore, if vaccine v œ V does not immunize against disease d’ 

œ D, dose j’ in time period t œ T, then the dual constraints corresponding to vaccine v œ V 

and time period t œ T do not change (i.e., the sets C

)','(̂ jdY

tv such that (d’, j’) – Ctv remain 

unchanged).  However, if vaccine v œ V does immunize against disease d’ œ D, dose j’ in 

time period t œ T (i.e., (d’, j’) œ Ctv), then the dual variable  is increased by D)','(̂ kdY t’v’.  

Furthermore, all other dual variables in the constraint corresponding to vaccine v œ V and 

time period t œ T remain constant, which implies 

∑
∈ tvCjd

jdY
),(

),(̂ +  Dt’v’ = +   ∑
∈ tvCjd

jdY
),(

),(̂
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

− ∑
∈ ''),(

),(̂
vtCjd

jdv Yc

∑
∈ tvCjd

jdY
),(

),(̂ +  (since (t’, v’) = ) 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

− ∑
∈ tvCjd

jdv Yc
),(

),(̂
tvCjdVvTt ∈∈∈ )','(:,

minarg
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

− ∑
∈ tvCjd

jdv Yc
),(

),(̂                <

                           = cv.    

Therefore, ∑
∈ tvCjd

jdY
),(

),(̂ < cv for all sets Ctv after iteration m + 1.  In fact, if vaccine v œ V is 

administered in time period t œ T (i.e., Xtv = 1), then ∑
∈ tvCjd

jdY
),(

),(̂ = cv, since in the algorithm 

when disease d’ œ D, dose j’ is covered by vaccine v œ V, Dtv = and  is 

increased by exactly this amount, which causes the dual constraint to become tight.  

Therefore, the only primal variables permitted to take on non-zero values are those 

corresponding to tight dual constraints, and hence, maintains the complementary slackness 

condition.See the Appendix for a detailed proof.  † 

∑
∈

−
tvCjd

jdv Yc
),(

),(̂ )','(̂ jdY

44 



Given that Y is dual feasible, then the cost of Y provides a lower bound for the cost of 

the optimal binary solution of VFSLBP(O)-MED, and hence, is used to bound the cost of the 

Primal-Dual heuristic solution.  Therefore, the Primal-Dual heuristic is also an 

approximation algorithm for VFSLBP(O)-MED.  Recall a = a

ˆ ˆ

Dd∈
max d, where ad = 

 for all diseases d œ D.   Theorem 5 gives the approximation bound 

for the Primal-Dual heuristic. 

)max)((
,...,1 djtTtnjvdVv PI

d
∈=∈ ΣΣ

THEOREM 5:  The Primal-Dual heuristic is an a-approximation algorithm for  

VFSLBP(O)-MED. 

PROOF: The Primal-Dual heuristic executes in O(|D|tu) time, which is clearly polynomial.  

Let zP-D = Σt∈TΣv∈V  cv Xtv be the cost of the solution returned by the Primal-Dual heuristic.  

For all t œ T, v œ V, if Xtv = 1, then, by Lemma 4, ∑
∈ tvCjd

jdY
),(

),(̂ = cv.  Furthermore, define 

))((),( djtTtvdVvjd PI ∈∈ ΣΣ=α  for all (d, j) œ D.  Therefore, 

zP-D   =    = tv
Tt Vv

v Xc∑∑
∈ ∈

tv
Tt Vv Cjd

jd XY
tv

∑∑ ∑
∈ ∈ ∈),(

),(̂  

          < ∑∑  (when X∑
∈ ∈ ∈Tt Vv Cjd

jd
tv

Y
),(

),(̂ tv = 1 for all t œ T and v œ V) 

         = ÿ ∑
∈D),(

),(̂
jd

jdY ),( jdα  

           < ÿ a∑
∈D),(

),(̂
jd

jdY d   (since ad = ),(,...,2,1
max jdnj d

α
=

) 

           < ÿ a  (since a = a∑
∈D),(

),(̂
jd

jdY
Dd∈

max d ) 

           < a ÿ zLP   (by weak duality and Lemma 4) 

           < a ÿ zIP   (since zLP < zIP).  † 

Corollaries 3 and 4 give similar results as those given by Corollaries 1 and 2 for the 

Rounding heuristic, except they are for the Primal-Dual heuristic.  Corollary 3 considers a 

tight childhood immunization schedule such that there are at most two vaccines that 

immunize against each disease d œ D (i.e., Σv∈V Ivd < 2 for all diseases d œ D), and Corrollary 

4 gives an upper bound on a for a tight childhood immunization schedule and for an arbitrary 

childhood immunization schedule. 
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COROLLARY 3:  Given a tight childhood immunization schedule, if Σv∈V Ivd < 2 for all 

diseases d œ D, then the Primal-Dual heuristic is a 2-approximation 

algorithm for VFSLBP(O)-MED. 

PROOF: See proof of Corollary 1. † 

COROLLARY 4: Given a tight childhood immunization schedule, a < u for the Primal-Dual 

heuristic, and given an arbitrary childhood immunization schedule, a < 

uÿt for the Primal-Dual heuristic.  

PROOF: See proof of Corollary 2. † 

Although the Primal-Dual heuristic has the same approximation bounds for 

VFSLBP(O)-MED as the Rounding and MAX Rounding heuristics, it should be more 

efficient in practice since it does not require the solution of a LP. 

3.3.4 Greedy Heuristic 

This section presents the Greedy heuristic for VFSLBP(O)-MED.  The Greedy heuristic 

iteratively selects the lowest cost available vaccine that immunizes against the most disease 

doses.  Recall, D = {(d, j) : d œ D, j = 1,2,…,nd }, Ctv = {(d, j) œ D: Ivd = 1 and Pdjt = 1} for 

all time periods t œ T and vaccines v œ V.  The Greedy heuristic is now formally given. 

Greedy Heuristic for VFSLBP(O)-MED 
Step 1. Initialize: 

a.  Xtv ≠ 0 for all t œ T and v œ V 
b. ≠ CtvĈ tv for all t œ T and v œ V 

Step 2. While C =  ∫ D do U
}1:{ =tvXtv
tvC

a. (t’, v’) ≠  (select the non-empty set  with the smallest 

cost per disease doses covered by vaccine v œ V in time period t œ T.  
Break ties by selecting vaccine v œ V that immunizes against the most 
diseases in time period t œ T.)  

VvTt ∈∈ ,
minarg |ˆ|/ tvv Cc tvĈ

b. Xt’v’ ≠ 1  (administer vaccine v’ œ V in time period t’œ T) 
c. ≠ \  for all t œ T and v œ V (remove all the disease doses 

covered by vaccine v’ œ V in time period t’œ T from all remaining sets) 
tvĈ tvĈ ''

ˆ
vtC

Step 3. Compute and return Σt∈TΣv∈V   cv Xtv
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Example 6 

 Consider the childhood immunization schedule, vaccine set, and cost vector from 

Example 5.  The Greedy heuristic proceeds as follows: 

Step 1:     Initialize: 

a. Xtv = 0 for t = 1,2,3,4 and v = 1,2 

b. 11Ĉ  = {(1,1), (3,1)},  = {(1,1), (2,1), (3,1)},  = {(1,2), (3,2)},  = 

{(1,2), (2,2), (3,2)},  = {(1,3), (3,3)},  = {(1,3), (2,3), (3,3)},  = 

{(1,3),(3,3)},  = {(1,3), (3,3)} 

12Ĉ 21Ĉ 22Ĉ

31Ĉ 32Ĉ 41Ĉ

42Ĉ

Step 2(1): C = « since Xtv = 0 for all t œ T, v œ V, and hence 

a. (t’,v’)  =  = (1,2) or (2,2) or (3,2) since | | > | |, etc.  
VvTt ∈∈ ,

minarg |ˆ|/ tvv Cc 12Ĉ 11Ĉ

b. X12 = 1 

c. 11Ĉ  = «,  = «,  = {(1,2), (3,2)},  = {(1,2), (2,2), (3,2)},  = 

{(1,3), (3,3)},  = {(1,3), (2,3), (3,3)},  = {(1,3),(3,3)},  = {(1,3), 

(3,3)} 

12Ĉ 21Ĉ 22Ĉ 31Ĉ

32Ĉ 41Ĉ 42Ĉ

Step 2(2): C = {(1,1), (2,1), (3,1)} ∫ D 

a. (t’,v’)  =  = (2,2) or (3,2) since | | > | | 
VvTt ∈∈ ,

minarg |ˆ|/ tvv Cc 22Ĉ 21Ĉ

b. X22 = 1 

c. 11Ĉ  = «,  = «,  = «,  = «,  = {(1,3), (3,3)},  = {(1,3), 

(2,3), (3,3)},  = {(1,3),(3,3)},  = {(1,3), (3,3)} 

12Ĉ 21Ĉ 22Ĉ 31Ĉ 32Ĉ

41Ĉ 42Ĉ

Step 2(3): C = {(1,1), (1,2), (2,1), (2,2), (3,1), (3,2)} ∫ D 

a. (t’,v’)  =  = (3,2) since  has largest cardinality 
VvTt ∈∈ ,

minarg |ˆ|/ tvv Cc 32Ĉ

b. X32 = 1 

c. 11Ĉ  = «,  = «,  = «,  = «,  = «,  = «,  = «,  = « 12Ĉ 21Ĉ 22Ĉ 31Ĉ 32Ĉ 41Ĉ 42Ĉ

STOP since C = {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)} = D and return 3X12 

+ 3X22 + 3X32  = 9, which is the optimal cost.  Ñ  

 The Greedy heuristic executes in O(|D|tu) time, and returns a feasible solution, since 

every iteration of the while loop (i.e., Step 2) administers a vaccine that satisfies at least one 

dose requirement for some disease d œ D (i.e., every iteration covers at least one (d, j) œ D).  

Therefore, the Greedy heuristic should (in practice) be more efficient than the MAX 
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Rounding heuristic.  Moreover, the Greedy heuristic improves the approximation bound on 

the returned solution.  This approximation bound for the Greedy heuristic was derived using 

the same analytic approach applied to the Primal-Dual heuristic.  To specify this 

approximation bound, define b = |C
VvTt ∈∈ ,

max tv| and Hk = i
k
i

1
1=Σ  (the sum of the first k elements in 

the harmonic series).  Lemma 5 shows that the Greedy heuristic constructs a feasible solution 

to the dual of the LP relaxation of VFSLBP(O)-MED. 

LEMMA 5:  The Greedy heuristic constructs a feasible solution Y for the dual of the LP 
relaxation of VFSLBP(O)-MED. 

ˆ

PROOF: Suppose the following step is inserted in the Greedy heuristic between Steps 2.b 

and 2.c. 

)|ˆ/(|ˆ
'''),( βHCcY vtvjd ←  for all (d, j) œ . ''

ˆ
vtC

This step estimates the dual variables corresponding to the disease doses covered by vaccine 

v’ œ V in time period t’ œ T.  Since the LP relaxation of VFSLBP(O)-MED is in canonical 

form (i.e., min{cx:Ax > b, x > 0}), then the dual LP is of the form max{yb:yA < c, y > 0} 

(Bazaraa et al. 1990).  Therefore, it is necessary to show that the values assigned by the 

algorithm to the variables satisfy),(̂ jdY v
Cjd

jd cY
tv

≤∑
∈),(

),(̂  for all t œ T, v œ V.  

 Consider any arbitrary set Ctv, t œ T and v œ V.  Let k = |Ctv| and assume the algorithm 

removes elements from this set in order of the index (i.e., element 1 is the first element 

deleted from set Ctv, element 2 is the second element deleted from set Ctv, and so on).  

Without loss of generality, suppose the set D is reordered such that the first k elements in D 

correspond to the k elements in Ctv.  Therefore, when the ith element in D, denoted by (d, j), is 

deleted (meaning disease d œ D, dose j is covered by some vaccine v’ œ V in time period t’ œ 

T), then  |ˆ| tvC > k – i + 1, and hence, by the algorithm,  

βHC
c

Y
vt

v
jd |ˆ|

ˆ
''

'
),( =  

        
βHC

c

tv

v

|ˆ|
≤     (since 

|ˆ| ''

'

vt

v

C
c  < 

|ˆ| tv

v

C
c  by Step 2.a of the algorithm) 

    
βHik

cv

)1( +−
≤   (since  |ˆ| tvC > k – i + 1). 

Therefore, 

48 



      (where i = 1,2,…,k corresponds to the i∑∑
=∈

=
k

i
i

Cjd
jd YY

tv 1),(
),(

ˆˆ th element in the set Ctv) 

          k
v

k

i

vv H
H
c

kkH
c

Hik
c

βββ

=⎟
⎠
⎞

⎜
⎝
⎛ +++

−
+=

+−
≤∑

=1

1
2
1

1
11

)1(
L  

      (since k = |Cvc≤ tv| <  b = |C
VvTt ∈∈ ,

max tv| implying Hk < Hb). 

Therefore, these values for the Y  variables are a dual feasible solution to the LP relaxation of 

VFSLBP(O)-MED.  † 

ˆ

By weak duality, the cost of the dual feasible solution Y constructed by the Greedy 

heuristic provides a lower bound for the cost of the optimal binary solution of VFSLBP(O)-

MED, which is used to bound the cost of the Greedy heuristic solution.  Therefore, the 

Greedy heuristic is also an approximation algorithm for VFSLBP(O)-MED.  Theorem 6 

gives the approximation bound for the Greedy heuristic.     

ˆ

THEOREM 6:  The Greedy heuristic is a Hb –approximation algorithm for VFSLBP(O)-

MED. 

PROOF:  The Greedy heuristic executes in O(|D|tu) time, which is clearly polynomial.  

Suppose the Greedy heuristic requires m iterations of the while loop in Step 2, then m < tÿu.  

Suppose the sets Ctv are indexed from 1,2,…,m,…,tÿu, in order of selection.  Therefore, the 

Greedy heuristic selects set at iteration l.  Furthermore, at iteration l, the heuristic 

satisfies a specific dose requirement for all diseases remaining in the set by administering 

vaccine v œ V in time period t œ T.   Therefore, each iteration satisfies a unique requirement 

for vaccine, which implies that the sets , l = 1,2,…,m partition the set D.  Moreover, = 

 at iteration l, since  for all (d, j) œ .   

ltvC

ltvĈ

ltvĈ
lvc

∑
∈ ltvCjd

jdYH
ˆ),(

),(̂β )|ˆ/(|ˆ
'''),( βHCcY vtvjd = ''

ˆ
vtC

Therefore, 

    = ∑ =  ∑ ∑∈ ∈Tt Vv tvv Xc
=

m

l
vl

c
1

∑ ∑
= ∈

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛m

l Cjd
jd

ltv

YH
1 ˆ),(

),(̂β

         =  ∑ ∑
= ∈

m

l Cjd
jd

ltv

YH
1 ˆ),(

),(̂β

         =   (since the sets  partition D) ∑
∈D),(

),(̂
jd

jdYH β ltvĈ

         < Hb zLP  
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         < Hb zIP     (since zLP < zIP). 
 
The first inequality follows from Lemma 5, where ∑

∈D),(
),(̂

jd
jdY is a dual feasible solution to the 

LP relaxation of VFSLBP(O)-MED, and by weak duality, ∑
∈D),(

),(̂
jd

jdY < zLP.  † 

 Observe that for an arbitrary childhood immunization schedule, Hb, where b = |C
VvTt ∈∈ ,

max tv| 

<  Val(v), will likely be much smaller than a = a
Vv∈

max
Dd∈

max d.  Corollary 5 considers the 

approximation bound for the Greedy heuristic using only monovalent vaccines, and Corollary 

6 considers the approximation bound for the Greedy heuristic using bivalent and trivalent 

vaccines. 

COROLLARY 5:  If Val(v) = 1 for all vaccines v œ V, then the Greedy heuristic yields the 

optimal vaccine formulary for VFSLBP(O)-MED. 

PROOF:  If Val(v) = 1 for all vaccines v œ V, then b = |C
VvTt ∈∈ ,

max tv| = 1, and hence, Hb = 1.  † 

COROLLARY 6:  If Val(v) < 2 for all vaccines v œ V, then the Greedy heuristic is a 3/2-

approximation algorithm for VFSLBP(O)-MED.  Furthermore, if Val(v) 

< 3 for all vaccines v œ V, then the Greedy heuristic is a 11/6-

approximation algorithm for VFSLBP(O)-MED. 

PROOF:  If Val(v) < 2 for all vaccines v œ V, then b = |C
VvTt ∈∈ ,

max tv| < 2, which implies that Hb <  

2
3

2
11 =+ .  Similarly, if Val(v) < 3 for all vaccines v œ V, then b = |C

VvTt ∈∈ ,
max tv| < 3, which 

implies that Hb < 6
11

3
1

2
1 =++1 .  † 

Example 7 

 The Hb approximation bound for the Greedy heuristic is asymptotic for some 

VFSLBP(O)-MED instances.  To see this, consider a childhood immunization schedule with 

T = {1}, D = {1,2,3}, and dose vector n = (1,1,1).  Therefore, all diseases d œ D have 

mutually exclusive doses and Pdjt = 1 for diseases d = 1,2,3, dose j = 1, and time period t = 1.  

Let the vaccine set V = {1 = {1}, 2 = {2}, 3= {3}, 4 = {1,2,3}} with cost vector c = 

(0.333,0.499,0.999,1).   Clearly, the Greedy heuristic would first select vaccine v = 1, then 

vaccine v = 2, and then vaccine v = 3 and return a cost of 0.333 + 0.499 + 0.999 = 1.831.  

However, the optimal solution is to administer the trivalent vaccine (i.e., vaccine v = 4) in 
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time period t = 1 at a cost of c4 = 1, and hence, the solution returned by the Greedy heuristic 

is º Hb ÿ zIP = H3ÿ1 º 1.833.  Ñ 

3.3.5 Generalized Heuristics 

This section generalizes the MAX Rounding, Primal-Dual, and Greedy heuristics for 

VFSLBP(O)-MED by converting a VFSLBP(O) instance into two distinct VFSLBP(O)-

MED instances, and then applying the MAX Rounding, Primal-Dual, and Greedy heuristics 

for each VFSLBP(O)-MED instance to find a feasible solution for the VFSLBP(O) instance.   

 The MAX Rounding, Primal-Dual, and Greedy heuristics for VFSLBP(O)-MED fail for 

an arbitrary VFSLBP(O) instance, where some diseases d œ D in the childhood immunization 

schedule do not have mutually exclusive doses, since the sets Ctv, for all time periods t œ T 

and vaccines v œ V, defined in the MAX Rounding, Primal-Dual, and Greedy heuristics for 

VFSLBP(O)-MED, no longer satisfy unique dose requirements, and since, for the diseases d 

œ D that do not have mutually exclusive doses, there are time periods t œ T when more than 

one required dose may be administered.  For example, if vaccine v œ V is a monovalent 

vaccine such that Ivd = 1 for disease d œ D, and in time period t œ T, Pdjt = 1(0) for j = 

1,2,(3,4,...,nd) then Ctv = {(d,1),(d,2)}, and hence, administering vaccine v œ V in time period 

t œ T satisfies doses 1 and 2 for disease d œ D.   Therefore, to ensure the sets Ctv satisfy 

unique dose requirements, consider two variations of the set Ctv for all time periods t œ T and 

vaccines v œ V 

1) Minimum Dose: = {(d, k) œ D: IMIN
tvC vd = 1 and k = min{j: Pdjt = 1}}  

2) Maximum Dose: = {(d, k) œ D: IMAX
tvC vd = 1 and k = max{j: Pdjt = 1}}.   

Variation 1) or 2) ensure that set Ctv (i.e., Ctv = for all time periods t œ T and vaccines v 

œ V, or C

MIN
tvC

tv =  for all time periods t œ T and vaccines v œ V) satisfies unique dose 

requirements for all diseases d œ D, and hence, each variation converts a VFSLBP(O) 

instance into a distinct VFSLBP(O)-MED instance.     

MAX
tvC

 Therefore, the A heuristic for VFSLBP(O) converts a VFSLBP(O) instance into two 

distinct VFSLBP(O)-MED instances, and executes the A heuristic for VFSLBP(O)-MED on 

each distinct VFSLBP(O)-MED instance, where A is the MAX Rounding, Primal-Dual, or 

Greedy heuristic.  The A heuristic is now formally given.      
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A Heuristic for VFSLBP(O)  
Step 1. Select A œ {MAX Rounding, Primal-Dual, Greedy} 
Step 2. Initialize: 

a. Let D = {(d, j) : d œ D, j = 1,2,…,nd } and Ctv =  for all t œ T, v œ V MIN
tvC

Step 3. Execute A heuristic for VFSLBP(O)-MED and return ZMIN = Σt∈TΣv∈V   cv Xtv 
Step 4. Initialize: 

a. Let D = {(d, j) : d œ D, j = 1,2,…,nd } and Ctv =  for all t œ T, v œ V MAX
tvC

Step 5. Execute A heuristic for VFSLBP(O)-MED and return ZMAX = Σt∈TΣv∈V   cv Xtv 
Step 6. Return min{ZMIN, ZMAX} 

 The A heuristic executes in O(|D|tu) time for A = Primal-Dual or Greedy and O(|TLP + 

|D|tu) time for A = MAX Rounding, where TLP is the time required to solve the LP 

relaxations of both distinct VFSLBP(O)-MED instances.   

Furthermore, the A heuristic returns a feasible solution for VFSLBP(O) provided a 

restriction is placed on the given childhood immunization schedule.  To describe this 

restriction, dose j = 1,2,…,nd is said to dominate dose k = 1,2,…,nd, j ∫ k, for disease d œ D if 

Pdjt > Pdkt for all time periods t œ T.  If disease d œ D has no dominant doses, then the time 

periods when dose j = 1,2,…,nd may be administered do not completely overlap with the time 

periods when dose k = 1,2,…,nd, j ∫ k, may be administered, and hence, for all j = 1,2,…,(nd 

– 1), there exists time periods t, t’ œ T such that Pdjt = 1 and Pd(j+1)t = 0 and Pdjt’ = 0 and 

Pd(j+1)t’ = 1.  Therefore, for VFSLBP(O), a restriction placed on the childhood immunization 

schedule is that, for all diseases d œ D, dose j = 1,2,…,nd
 does not dominate dose k = 

1,2,…,nd, j ∫ k.  All of the diseases in the 2006 Recommended Childhood Immunization 

Schedule do not have a dose that dominates any other dose, and future schedules should also 

meet this restriction, since there is a biological spacing requirement between each dose of 

vaccine for every disease d œ D. 

 This restriction ensures every (d, j) œ D (in Steps 2.a and 4.a) is contained in some set 

Ctv for at least one time period t œ T and vaccine v  œ V.  Therefore, the A heuristic returns a 

feasible solution for VFSLBP(O) (assuming VFSLBP(O) has a feasible solution), since every 

iteration of the A heuristic for VFSLBP(O)-MED (in Step 3 and Step 5) administers a 

vaccine that satisfies at least one dose requirement for some disease d œ D (i.e., every 

iteration covers at least one (d, j) œ D).   

 The approximation bounds shown for the A heuristic for VFSLBP(O)-MED do not apply 

to the solution returned by the A heuristic for VFSLBP(O) (in Step 6), since the A heuristic 
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for VFSLBP(O) converts a VFSLBP(O) instance into two distinct VFSLBP(O)-MED 

instances.  Work is in progress to determine approximation bounds for the A heuristic for 

VFSLBP(O). 

3.4 Computational Results 

This section reports computational results comparing the MAX Rounding, Primal-Dual, and 

Greedy heuristics and the DP algorithm presented in Section 3.3.1.  Computational results are 

also reported for an IP branch and bound (IP B&B) algorithm.  However, the Rounding 

heuristic results are not reported, since this heuristic (empirically) yields very costly 

solutions.  The MAX Rounding, Primal-Dual, and Greedy heuristics and the DP and IP B&B 

algorithms were executed on three sets of test problems to demonstrate their computational 

effectiveness and limitations.  The first test problem is the 2006 Recommended Childhood 

Immunization Schedule.  The second set of test problems are randomly generated based on 

hypothetical future childhood immunization schedules, while the third set of test problems 

are larger, randomly generated childhood immunization schedules executed with several 

different vaccine sets.  The size of these randomly generated childhood immunization 

schedules assume that the future Recommended Childhood Immunization Schedules will 

expand to include more diseases and time periods, and hence, will require a larger number of 

both monovalent and combination vaccines.  These assumptions are reasonable, given recent 

trends in expanding the schedule.  For example, four time periods and three diseases have 

been added to the Recommended Childhood Immunization Schedule since 1995, and there 

are currently several vaccine products being marketed and tested for use in children (CDC 

1995, Cochi 2005, Infectious Diseases in Children 2002).   

 In this section, the solution quality effectiveness measure q is reported for each heuristic, 

where q = ZHeuristic /Z* and  ZHeuristic is the objective function cost returned by the heuristic and 

Z* is the optimal objective function cost (returned by the exact algorithms).  The execution 

time (in CPU seconds) is also reported for each heuristic and exact algorithm, which is the 

efficiency effectiveness measure.  All heuristics and exact algorithms were coded and 

executed in MATLABv7.0 on a 2.4 MHz Pentium IV with 1GB of RAM including the IP 

B&B algorithm (using default settings) from MATLAB’s optimization toolbox. 

53 



 The first test problem is the 2006 Recommended Childhood Immunization Schedule 

displayed in Figure 1.  Therefore, D = {1 = Hepatitis B, 2 = Diphtheria-Tetanus-Pertussis, 3 

= Haemophilus influenzae type b, 4 = Polio, 5 = Measles-Mumps-Rubella, 6 = Varicella, 7 = 

Pneumococcus, 8 = Influenza, 9 = Hepatitis A} with dose vector  n = (3, 5, 4, 4, 2, 1, 4, 1, 2), 

since diphtheria, tetanus, and pertussis are considered one disease and measles, mumps, and 

rubella are also considered one disease, and T = {1,2,…,10}.  The vaccine set is V = {1 = 

{1}, 2 = {2}, 3 = {3}, 4 = {4}, 5 = {5}, 6 = {6}, 7 = {7}, 8 = {8}, 9 = {9}, 10 = {2,3}, 11 = 

{1,3}, 12 = {1,2,4}}.  The parameters Ivd are indicated by the set V.  For example, vaccine 1 

is the monovalent vaccine for disease 1 (Hepatits B) and vaccine 12 is the combination 

vaccine Pediarix® that immunizes against diseases 1 (Hepatitis B), 2 (Diphtheria-Tetanus-

Pertussis), and 4 (Polio).  The schedule parameters Pdjt, Qdt, and mdt for diseases d œ D, dose j 

= 1,2,…,nd, and time periods t œ T are all obtained from Figure 1.  For example, for disease d 

= 1 = Hepatitis B and dose j = 2, Pdjt = 1(0) for time periods t = 2,3(1,4,5,6,7,8,9,10).  Three 

different cost scenarios are evaluated.  The first scenario only considers the actual purchase 

price of the vaccines.  In particular, the cost vector c = (9.00, 12.75, 7.66, 10.42, 16.67, 

52.25, 54.12, 9.71, 12.10, 24.62, 24.50, 38.34), where cv, v = 1,2,…,12, is the Federal 

contract purchase price (in US$) for vaccine v œ V (CDC Vaccine Price List 2005).  The 

second scenario includes the purchase price of the vaccine and a fixed injection cost of 

$10/injection, and the final scenario includes the purchase price, the fixed injection cost, and 

a preparation cost of $3/injection.  Table 2 reports the objective function cost Z and execution 

time (in CPU seconds) for each heuristic and exact algorithm and for each scenario.  Table 2 

also reports the solution quality effectiveness measure q for each heuristic.  

Table 2: Computational Results for 2006 Recommend Childhood Immunization Schedule 

  Scenario 1 Scenario 2 Scenario 3 
Algorithm Z Time q Z Time q Z Time q 

MAX Rounding 499.05 0.13 1.00 736.77 0.13 1.02 796.77 0.13 1.02 
Primal-Dual 499.05 0.06 1.00 910.65 0.03 1.27 988.65 0.08 1.27 

Greedy 499.05 0.06 1.00 719.81 0.05 1.00 779.81 0.05 1.00 
DP 499.05 0.32 719.81 0.30 779.81 0.31 

IP B&B 499.05 0.91  719.81 0.92  779.81 0.92  

 Lemma 1 and Theorem 3 showed that VFSLBP(O) is polynomial time solvable when all 

vaccines v œ V are monovalent vaccines, and hence, the results reported in Table 2 for 

Scenario 1 are not surprising, given that most vaccines v œ V are monovalent.  In fact, the 
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combination vaccines are not competitively priced when considering the purchase price 

alone.   The fixed costs considered in Scenarios 2 and 3 penalize the monovalent vaccines 

and make the combination vaccines more economical.  For example, the purchase prices for 

monovalent vaccines 1, 2, and 4 sum to $32.17, which is less than the $38.34 purchase price 

for the combination vaccine Pediarix® (i.e., v = 12).  However, in Scenario 2, the total cost 

of the combination vaccine Pediarix® is $48.34, whereas the total costs for monovalent 

vaccines 1, 2, and 4 sum to $62.17.  Observe that the exact algorithms were very efficient.  

However, as the next set of test problems illustrate, this is unlikely to occur for future 

Recommended Childhood Immunization Schedules, as the schedule expands and more 

combination vaccines enter the market.   

 The second set of test problems considers hypothetical future childhood immunization 

schedules.  Each heuristic and exact algorithm were executed on 60 randomly generated 

childhood immunization schedules (30 schedules with mutually exclusive doses (MED) for 

all diseases d œ D and 30 schedules with non-mutually exclusive doses (non-MED)) with 15 

time periods, 75 vaccines, and 11 diseases.  Therefore, each random childhood immunization 

schedule reflects a gradual expansion in the sets D (from 9 to 11 diseases) and T (from 10 to 

15 time periods) and a significant increase in the number of available vaccines, particularly, 

combination vaccines.  In each random childhood immunization schedule, 1 < nd < 5 for all 

disease d œ D, 1 < Val(v) < 6 and cv ~ U(10,80) (uniformly distributed) for all vaccines v œ 

V, and Pdjt = 1 for at most three time periods t œ T for every disease d œ D and dose j = 

1,2,…,nd.   Table 3 reports the average m and the standard deviation s for the execution time 

(in CPU seconds) and solution quality q for each type of schedule (MED and non-MED) 

averaged over the 30 random childhood immunization schedules.   

Table 3: Computational Results for Future Childhood Immunization Schedule 
Schedule Type 

MED non-MED 
Time q Time q 

Algorithm m s m s m s m s 
MAX Rounding 0.42 0.05 1.07 0.06 0.97 0.13 1.07 0.07 

Primal-Dual 0.14 0.02 1.68 0.22 0.31 0.04 1.63 0.25 
Greedy 0.24 0.03 1.06 0.07 0.57 0.07 1.10 0.08 

DP 3.1 1.2 10.6 3.5 
IP B&B 40.6 46.5  3572(1755)a 2994(1808)  

a
The IP B&B algorithm found the optimal solution for 20 of the 30 non-MED childhood immunization schedules, but exceeded the 

default execution time limit (two hours) for the remaining three childhood immunization schedules.  The statistics shown in parentheses 
are for the 20 childhood immunization schedules for which the IP B&B algorithm found the optimal solution. 

55 



 The solutions returned by the MAX Rounding and Greedy heuristics on average were 

within ten percent of the optimal solution.  Across all 60 randomly generated childhood 

immunization schedules, the optimal solution was returned 24 times (15 MED schedules, 9 

Non-MED schedules) by at least one of these two heuristics.   The Primal-Dual heuristic was 

the most efficient, but returned the poorest quality solutions.  Moreover, the heuristics for the 

non-MED random childhood immunization schedules required longer execution times than 

for the MED random childhood immunization schedules, since for the non-MED random 

childhood immunization schedules, each heuristic must be implemented twice—once for the 

minimum dose definition of the sets Ctv and once for the maximum dose definition.  The 

exact algorithms required significantly more time to execute than the heuristics (i.e., the least 

efficient heuristic MAX Rounding was 7 times (14 times) faster than the most efficient exact 

algorithm DP for MED (Non-MED) schedules).  Moreover, the IP B&B algorithm, on 

average, required significantly more execution time than the DP algorithm.  Furthermore, the 

DP algorithm showed far less variability in its execution time.  The observed difference in 

execution time between the heuristics and exact algorithms reported in Table 3 could be 

problematic for practical uses.  For example, a webpage used to find a “good” vaccine 

formulary for a given childhood immunization schedule would require an algorithm to 

execute in real-time, since most web users would terminate a web application that required 

several seconds or minutes to execute.  Moreover, the difference in execution time between 

the heuristics and exact algorithms will provide an efficient analysis of larger childhood 

immunization schedules that may involve Monte Carlo simulation (see Jacobson and Sewell 

2002) or the balking problem (described in Section 3.3.1), where either of these may require 

the solution of hundreds of thousands of VFSLBP(O) instances.  Furthermore, the childhood 

immunization schedule may need to be solved for each child, on a case by case basis, and 

hence, efficient algorithms are needed in order to provide, in real-time, practical value for the 

public health community. 

 The third set of test problems considers larger randomly generated childhood 

immunization schedules that demonstrate the effect of combination vaccines and further 

demonstrate how the schedule’s size affects the efficiency and solution quality of each 

heuristic and exact algorithm.  Each heuristic and exact algorithm were executed on 30 

randomly generated childhood immunization schedules (with non-MED) with 20 time 
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periods, 90 vaccines, and 13 diseases such that 1 < nd < 5 for all diseases d œ D, cv ~ 

U(10,80) for all vaccines v œ V, and Pdjt = 1 for at most four time periods t œ T for every 

disease d œ D and dose j = 1,2,…,nd.  For each randomly generated childhood immunization 

schedule, each heuristic and exact algorithm was executed six times, where in execution i = 

1,2,…,6, Val(v) < i for all vaccines v œ V.  Table 4 reports for each heuristic, algorithm and 

valency, the execution time (in CPU seconds), and the measure q averaged across all 30 

randomly generated childhood immunization schedules.  The overall average and standard 

deviation across all vaccine sets is also reported for each heuristic and exact algorithm as 

well as the relative LP-IP gap = ZIP/ZLP, where ZIP (ZLP) is the optimal objective function cost 

for the IP (LP relaxation).            

Table 4: Computational Results for the Effect of Combination Vaccines                               

Heuristics Exact Algorithms 
MAX Round Primal -Dual Greedy DP IP B&Ba

Val(v) < Time q Time q Time q Time Time 
LP-IP 
GAP 

1 2.8 1.00 1.0 1.00 2.4 1.00 56 5 1.00 (1.00)
2 1.8 1.02 0.8 1.42 1.6 1.06 61 164 1.01 (1.01)
3 1.6 1.02 0.7 1.59 1.3 1.07 64 861 (156) 1.01 (1.01)
4 1.5 1.03 0.6 1.64 1.1 1.08 68 2303 (521) 1.02 (1.01)
5 1.4 1.07 0.6 1.68 1.0 1.08 71 3999 (1545) 1.04 (1.02)
6 1.4 1.08 0.5 1.59 0.9 1.08 75 5493 (1488) 1.06 (1.02)

Average 1.8 1.04 0.7 1.48 1.4 1.06 66 2138 (647) 1.02 (1.01)
St Dev 0.5 0.03 0.2 0.25 0.6 0.03 7 2228 (695) 0.02 (0.01)

a
The IP B&B algorithm found the optimal solution for 135 of the 180 VFSLBP(O) instances (each childhood immunization schedule 

was executed six times), but exceeded the default execution time limit (two hours) for the remaining 45 instances (3 instances for Val(v) 
< 3, 8 instances for Val(v) < 4, 13 instances for Val(v) < 5, and 21 instances for Val(v) < 6).  The statistics shown in parentheses are for 
the 135 instances for which the IP B&B algorithm found the optimal solution 

The data reported in Table 4 shows that in most cases the execution time required to 

optimally solve VFSLBP(O) steadily increased as the valency of the vaccine set increased, 

while the execution times for the heuristics decreased as the valency of the vaccine set 

increased.  For example, when Val(v) = 1 for all vaccines v œ V, the least efficient heuristic 

MAX Rounding only slightly outperformed the most efficient exact algorithm IP B&B (2.8 

vs. 5 seconds).  However, when Val(v) < 5(6) for all vaccines v œ V, the least efficient 

heuristic MAX Rounding was 50 times (54 times) faster than the most efficient exact 

algorithm DP.  As expected, however, the heuristic solution quality deteriorated as the 

valency of the vaccine set increased, but still fell within ten percent of the optimal solution 

for the MAX Rounding and Greedy heuristics.  The observed decrease in execution time for 
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the heuristics is intuitive since each heuristic should require less iterations when more 

vaccines are able to protect against multiple diseases.  In the case of monovalent vaccines, 

each heuristic found the optimal solution on every random childhood immunization schedule, 

which is consistent with the complexity results and approximation bounds presented earlier 

in this chapter.    

 The data reported in Tables 2-4 all suggest that on average, the DP algorithm requires 

significantly less computational effort to find the optimal solution than is required by the IP 

B&B algorithm and with less variability.  As shown in Section 3.3.1, the computational 

complexity of the DP algorithm is highly sensitive to the number of diseases, since the 

decision space is bounded above by 2d and SMax also depends on the number of diseases.  On 

the other hand, the computational complexity of the IP B&B algorithm is highly sensitive to 

the number of decision variables, since the number of possible branches is bounded above by 

2tÿu (there are tÿu binary decision variables in an instance of VFSLBP(O)).  Furthermore, the 

computational effort of an IP B&B algorithm is sensitive to the gap between the cost of the 

optimal integer solution and the corresponding cost of the optimal LP relaxation solution, 

since a large gap would tend to require more branching to find the optimal integer solution 

(Nemhauser and Wolsey 1999).  The data reported in Table 2-4 provide empirical support for 

these remarks.  For example, the DP algorithm was always more efficient than the IP B&B 

algorithm except in Table 4 when Val(v) = 1 and d = 13, and the IP B&B algorithm exceeded 

the default execution time limit (two hours) for 45 of the 180 VFSLBP(O) instances (each 

childhood immunization schedule was executed six times) when the average LP-IP gap was 

1.06, which is two standard deviations above the average LP-IP gap.  Therefore, it is 

reasonable to conjecture that the DP algorithm will be more efficient for childhood 

immunization schedules when the number of diseases remains relatively small (i.e., d < 15), 

and the IP B&B algorithm will be more efficient for childhood immunization schedules when 

the number of diseases is large (i.e., d > 15) and the number of time periods and vaccines 

remains reasonable (i.e., tÿu < 1500). 
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Chapter 4: The Vaccine Formulary Selection with 

Restricted Extraimmunization Problem 
This chapter presents a general model that limits the amount of extraimmunization for any 

given childhood immunization schedule.  It also rigorously explores the theoretical structure 

of this general model and provides an extensive computational study is also presented.   The 

chapter is organized as follows.  Section 4.1 presents general models (formulated as a 

decision problem and as a discrete optimization problem) that determine the set of vaccines 

(i.e., a vaccine formulary) that should be used in a clinical environment to satisfy any given 

childhood immunization schedule while restricting extraimmunization.  Section 4.2 presents 

the computational complexity of the decision/discrete optimization problems. Section 4.3 

presents a description and analysis of several algorithms, both exact and heuristic, for solving 

the discrete optimization problem.  Finally, Section 4.4 presents a computational comparison 

of these algorithms.  

4.1 Model Formulation and Terminology 

A model formulation for a decision problem and a discrete optimization problem used to 

design a vaccine formulary that satisfies a given childhood immunization schedule while 

restricting extraimmunization is presented.  Some simplifications and extensions of the 

discrete optimization problem are also described.   

Given a childhood immunization schedule, the decision problem, termed the Vaccine 

Formulary Selection with Restricted Extraimmunization Problem (VFSREP), asks whether it 

is possible to design a vaccine formulary that restricts extraimmunization for a specified set 

of diseases.  This problem is now formally stated. 

Vaccine Formulary Selection with Restricted Extraimmunization Problem (VFSREP) 

Given: 

- A set of time periods, T = {1,2,…,t}, 

- a set of diseases, D = {1,2,…,d},  

- a set of diseases where extraimmunization is permitted, DE Œ D, with |DE| = dE, 
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- a set of diseases where extraimmunization is not permitted, DNE  = D\DE, with |DNE| = 

dNE, 

- a set of vaccines V = {1,2,…,u}, available to be administered to immunize against the 

d diseases, 

- the number of doses of a vaccine that must be administered for immunization against 

the d diseases,  n1,n2,…, nd, 

- a set of binary parameters that indicate which vaccines immunize against which 

diseases;  therefore, Ivd = 1 if vaccine v œ V  immunizes against disease d œ D, 0 

otherwise, 

- a set of binary parameters that indicate the set of time periods in which a particular 

dose of a vaccine may be administered to immunize against a disease; therefore, Pdjt 

= 1 if in time period t œ T, a vaccine may be administered to satisfy the jth dose, j = 

1,2,…,nd, requirement for disease d œ D, 0 otherwise,   

- a set of binary parameters that indicate the set of time periods in which a vaccine may 

be administered to satisfy any dose requirement against a disease; therefore, Qdt = 1 if 

in time period t œ T, a vaccine may be administered to satisfy any dose requirement 

against disease d œ D, 0 otherwise, (i.e., for any disease d œ D and time period t œ T, 

Qdt = 1 if and only if Pdjt = 1 for some dose j = 1,2,…,nd), 

- a set of binary parameters that indicate the set of time periods in which no dose of a 

vaccine may be administered to immunize against a disease where extraimmunization 

is not permitted; therefore, Rdt = 1 if in time period t œ T, no dose of a vaccine may be 

administered to immunize against disease d ∈ DNE, 0 otherwise, (i.e., for any disease 

d œ DNE and time period t œ T, Rdt = 1 if and only if Qdt = 0), 

- a set of integer parameters that indicate the minimum number of doses of a vaccine 

required for disease d œ D through time period t œ T; denoted by mdt.   

Question: Does there exist a set of vaccines from V that can be administered over the 

time periods in T such that these vaccines immunize against all the diseases in D while 

restricting extraimmunization, (i.e., do there exist values for the binary decision 

variables Xtv, t ∈ T, v ∈ V, where Xtv = 1 if vaccine v œ V is administered in time period 

t œ T, 0 otherwise, and for the binary variables Udt, d ∈ D, t ∈ T, where Udt = 1 if any 

vaccine v œ V that immunizes against disease d œ D is administered in time period t œ T 
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, 0 otherwise, such that for all diseases d ∈ D, Σt∈TΣv∈V Pdjt Xtv Ivd > 1 for dose j = 

1,2,…,nd, Σt=1,2,…,t’ Qdt Udt >  for all time periods  t’tdm ′  œ T, and Σv∈V Qdt Xtv Ivd > Udt 

for all time periods t œ T, and for all diseases d ∈ DNE, Σt∈TΣv∈V Rdt Xtv Ivd = 0 and Σt∈T 

Σv∈V Qdt Xtv Ivd = nd)? 

 In the VFSREP formulation, the given sets and parameters equate to a childhood 

immunization schedule.  As was the case for VFSLBP in Chapter 3, the doses for all diseases 

d œ D are assumed to be sequentially ordered, and the dose (nd and mdt) and schedule (Pdjt 

and Qdt) parameters are also analogous to those in VFSLPB.  Note that schedule parameters 

Pdjt and Qdt specify the time periods when vaccination is “permitted” (or useful) for disease d 

œ D, while the schedule parameters Rdt specify the time periods when vaccination is 

“restricted” for disease d œ DNE.  For example, assuming disease d = hepatitis B œ DNE, 

Figure 1 implies Qdt = 1(0) for time periods t =1,2,3,5,6,7,8(4,9,10) and Rdt = 1(0) for time 

periods t = 4,9,10(1,2,3,5,6,7,8).  The set DNE is the set of diseases where extraimmunization 

is restricted based on biological and/or philosophical constraints, and hence, may change for 

each child, on a case-by-case basis.  The question in VFSREP asks if there exists a vaccine 

formulary administered over the time periods in T that satisfies the given childhood 

immunization schedule and restricts extraimmunization for the diseases in the set DNE (i.e., a 

variable assignment for the binary decision variables Xtv, for all time periods t ∈ T and 

vaccines v ∈ V, and for the binary decision variables Udt, for all diseases d œ D and time 

periods t œ T, that satisfies the per dose requirements (Σt∈TΣv∈V Pdjt Xtv Ivd > 1 for dose j = 

1,2,…,nd) and total dosage requirements (Σt=1,2,…,t’ Qdt Udt >  for all time period t’ œ T 

and Σ

tdm ′

v∈V Qdt Xtv Ivd > Udt for all time periods t œ T ) for each disease d œ D, and does not 

exceed the total dosage requirements (Σt∈T Σv∈V Qdt Xtv Ivd = nd) or provide a dose in a time 

period when no dose of a vaccine may be administered (Σt∈TΣv∈V Rdt Xtv Ivd = 0) for each 

disease d œ DNE).   

A solution to VFSREP may be determined by solving a discrete optimization problem.  

To describe this problem, some additional parameters and variables are needed.  Let 

- rd œ Q+ be the weight of extraimmunization for disease d œ DNE for all time periods t 

œ T such that Qdt = 1 (i.e., in time periods when vaccination is permitted),    
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- gd œ Q+ be the weight of extraimmunization for disease d œ DNE for all time periods t 

œ T such that Rdt = 1 (i.e., in time periods when vaccination is restricted), 

- œ ZP
dZ + »{0} be the number of extra doses of vaccine administered for disease d œ 

DNE in all time periods t œ T such that Qdt = 1, (i.e., in time periods when vaccination 

is permitted), and 

- œ ZR
dZ + »{0} be the number of extra doses of vaccine administered for disease d œ 

DNE in all time periods t œ T such that Rdt = 1, (i.e., in time periods when vaccination 

is restricted), 

where Q+ and Z+ »{0} correspond to the set of all positive rational numbers and the set of all 

non-negative integers, respectively.  Therefore, the following integer program can be used to 

answer VFSREP.  

Integer Programming Model for Vaccine Formulary Selection with Restricted 

Extraimmunization Problem (VFSREP(O)) 

  Minimize ∑  
∈

+
NEDd

R
dd

P
dd ZZ γρ           (O) 

  Subject to 

     ∑ ∑∈ ∈Tt Vv vdtvdjt IXP > 1     for all d œ D, j = 1,2,…,nd , (1) 

     ∑ = ',...,2,1 tt dtdtUQ > m     for all d œ D, t’ œ T,   (2) td ′

     ∑ ∈Vv vdtvdt IXQ > Udt      for all d œ D, t œ T,   (3) 

     ∑ ∑ –  = n
∈ ∈Tt Vv vdtvdt IXQ P

dZ d  for all d œ DNE,    (4) 

     ∑ ∑ –  = 0    for all d œ D
∈ ∈Tt Vv vdtvdt IXR R

dZ NE,    (5) 

     Xtv œ {0,1}       for all t œ T, v œ V,   (6) 

     Udt œ {0,1}      for all d œ D, t œ T,   (7) 

     , œ ZP
dZ R

dZ + »{0}    for all d œ DNE,     (8) 

where sets T, D, DNE and V, parameters {nd}, {Ivd}, {Pdjt}, {Qdt}, {Rdt}, and {mdt}, 

and variables {Xtv} and {Udt} are defined in VFSREP. 

The objective function (O) minimizes the total weighted amount of extraimmunization of the 

vaccine formulary subject to the dose requirements for each disease d œ D and 

extraimmunization restrictions for each disease d œ DNE.  The objective function weights are 
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subjective, and hence, allow the model user to weight extraimmunization differently for each 

disease d œ DNE and/or for time periods when vaccination is permitted versus when 

vaccination is restricted.  For example, a pediatrician may weigh more heavily those diseases 

that pose biological risks from extraimmunization.  In the non-weighted case (i.e., rd = gd = 1 

for all disease d œ DNE), the objective function minimizes the total number of extra doses 

administered for all diseases d œ DNE.  In any case, if the minimum total weighted amount of 

extraimmunization equals zero, then the answer to VFSREP is “yes.”  Constraint (1) ensures 

that for each disease d œ D, at least one vaccine that provides immunization for disease d œ D 

is administered in some time period when dose j = 1,2,…,nd may be administered.  Constraint 

(2) and (3) guarantees that for each disease d œ D, at least mdt doses of a vaccine that 

immunize against disease d œ D are administered in the first t œ T time periods, while also 

ensuring that at most one dose requirement for disease d œ D is satisfied in time period t œ T.  

Constraint (4) and (5) are for each disease d œ DNE.  Constraint (4) ensures that the total 

number of doses administered in time periods when vaccination is permitted equals the dose 

requirement nd, plus any extra doses that are administered in the time periods when 

vaccination is permitted.  Constraint (5) ensures that the number of doses administered in 

time periods when vaccination is restricted equals zero, plus any extra doses that are 

administered in the time periods when vaccination is restricted.  Constraint (6), (7), and (8) 

are the binary and integer constraints on the respective decision variables. 

Example 8 

An example of the model parameters and formulations are now given for the childhood 

immunization schedule in Figure 5. 

TIME PERIOD 
DISEASE 1 2 3 4 5 6 7 8 

1   Dose 1 Dose 2 Dose 3  Dose 4 
2   Dose 1 Dose 2 Dose 3 
3      Dose 1 

Figure 5: Childhood Immunization Schedule for Example 8

Here, T = {1,2,3,4,5,6,7,8}, D = {1,2,3}, and the dose vector n = (4,3,1), where the dth 

component of n corresponds to the dose requirement for disease d = 1,2,3.  Furthermore, if 

DNE = {1}, then the binary schedule parameters Pdjt, Qdt, and Rdt are: 

for disease d = 1, 

dose j = 1: Pdjt = 1(0) for time period t = 3(1,2,4,5,6,7,8), 
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dose j = 2: Pdjt = 1(0) for time period t = 4(1,2,3,5,6,7,8),  

dose j = 3; Pdjt = 1(0) for time period t = 5(1,2,3,4,6,7,8), and, 

dose j = 4; Pdjt = 1(0) for time period t = 7,8(1,2,3,4,5,6), and hence,  

Qdt = 1(0) for time period t = 3,4,5,7,8(1,2,6), which implies 

Rdt = 1(0) for time period t = 1,2,6(3,4,5,7,8), and   

for disease d = 2,  

dose j = 1: Pdjt = 1(0) for time period t = 3(1,2,4,5,6,7,8),  

dose j = 2: Pdjt = 1(0) for time period t = 4(1,2,3,5,6,7,8), and 

dose j = 3: Pdjt = 1(0) for time period t = 5,6,7,8(1,2,3,4), and hence,  

Qdt = 1(0) for time period t = 3,4,5,6,7,8(1,2), and 

for disease d = 3, 

 dose j = 1: Pdjt = 1(0) for time period t = 6,7,8(1,2,3,4,5), and hence, 

 Qdt = 1(0) for time period t = 6,7,8(1,2,3,4,5). 

The minimum dose vectors for each disease d œ D are m1 = (0,0,1,2,3,3,3,4), m2 = 

(0,0,1,2,2,2,2,3), and m3 = (0,0,0,0,0,0,0,1), where mdt is the tth component, t = 1,2,…,8, of 

vector md for disease d = 1,2,3.   

Suppose V = {1 = {1,2,3}}, which implies the binary parameters Ivd: I1d = 1 for all 

diseases d = 1,2,3.   

 Therefore, VFSREP asks: do there exist values for the binary variables Xtv, t ∈ T, v ∈ V, 

where Xtv = 1 if vaccine v œ V is administered in time period t œ T, 0 otherwise, and for 

binary variables Udt, d œ D, t œ T, where Udt = 1 if any vaccine v œ V that immunizes against 

disease d œ D is administered in time period t œ T , 0 otherwise, such that: 

for disease d = 1, 

 dose j = 1: , 131 ≥X

dose j = 2: ,  141 ≥X

dose j = 3: ,  151 ≥X

dose j = 4; , and time period 18171 ≥+ XX

t = 1: Q11 = 0 fl no constraint, 

t = 2: Q12 = 0 fl no constraint, 

t = 3: , 113 ≥U
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t = 4: , 21413 ≥+UU

t = 5: , 3151413 ≥++ UUU

t = 6: , 3151413 ≥++ UUU

t = 7: , 317151413 ≥+++ UUUU

 t = 8:  41817151413 ≥++++ UUUUU

t = 1: Q11 = 0 fl no constraint, 

t = 2: Q12 = 0 fl no constraint, 

t = 3: , 1331 UX ≥

t = 4: , 1441 UX ≥

t = 5: , 1551 UX ≥

t = 6: , 1661 UX ≥

t = 7: , 1771 UX ≥

 t = 8: , 1881 UX ≥

Total Doses: 48171514131 =++++ XXXXX , 

Restricted Doses: 0612111 =++ XXX , and 

for disease d = 2, 

 dose j = 1: , 131 ≥X

dose j = 2: ,  141 ≥X

dose j = 3: , and time period 181716151 ≥+++ XXXX

t = 1: Q21 = 0 fl no constraint, 

t = 2: Q22 = 0 fl no constraint, 

t = 3: , 123 ≥U

t = 4: , 22423 ≥+UU

t = 5: , 2252423 ≥++ UUU

t = 6: , 226252423 ≥+++ UUUU

t = 7: , 22726252423 ≥++++ UUUUU

t = 8: 3282726252423 ≥+++++ UUUUUU  

t = 1: Q21 = 0 fl no constraint, 

t = 2: Q22 = 0 fl no constraint, 
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t = 3: , 2331 UX ≥

t = 4: , 2441 UX ≥

t = 5: , 2551 UX ≥

t = 6: , 2661 UX ≥

t = 7: , 2771 UX ≥

 t = 8: , and 2881 UX ≥

for disease d = 3,  

 dose j = 1: , and time period 1817161 ≥++ XXX

t = 1: Q31 = 0 fl no constraint, 

t = 2: Q32 = 0 fl no constraint, 

t = 3: Q33 = 0 fl no constraint, 

t = 4: Q34 = 0 fl no constraint, 

t = 5: Q35 = 0 fl no constraint, 

t = 6: , 036 ≥U

t = 7: , 03736 ≥+UU

t = 8:  1383736 ≥++ UUU

t = 1: Q31 = 0 fl no constraint, 

t = 2: Q32 = 0 fl no constraint, 

t = 3: Q33 = 0 fl no constraint, 

t = 4: Q34 = 0 fl no constraint, 

t = 5: Q35 = 0 fl no constraint, 

t = 6: , 3661 UX ≥

t = 7: , 3771 UX ≥

 t = 8: ? 3881 UX ≥

Therefore, if rd = gd = 1 for disease d = 1, then the formulation for VFSREP(O) 

(excluding redundant constraints) for this example is: 

Minimize   RP ZZ 11 +

Subject to 

    131 ≥X
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141 ≥X  

151 ≥X  

18171 ≥+ XX  

418171514131 =−++++ PZXXXXX  

01612111 =−++ RZXXX  

181716151 ≥+++ XXXX  

1817161 ≥++ XXX   

}1,0{∈tvX        for all t œ T, v œ V  

PZ1 , œ ZRZ1
+ »{0}.  Ñ 

 Observe that in Example 8 the constraints Σt=1,2,…,t’ Qdt Udt  >  and Σtdm ′ v∈V Qdt Xtv Ivd > 

Udt for each disease d œ D and time period t œ T are redundant since each disease d œ D has 

mutually exclusive doses.  Therefore, to simplify the formulation of VFSREP(O), recall that 

Tdj = {t œ T : Pdjt = 1} is the set of time periods when dose j = 1,2,…,nd, may be administered 

for disease d œ D, where, by assumption, the time periods in Tdj are consecutive for all 

diseases d œ D and doses j = 1,2,…, nd,.  Furthermore, recall that a disease d œ D is defined 

to have mutually exclusive doses if Tdi ∩ Tdj = « for all i, j = 1,2,…,nd, i ≠ j (i.e., the sets Tdj, j 

= 1,2,…,nd are pairwise mutually exclusive).  Note that constraints (2) and (3) are redundant 

for any disease d œ D with mutually exclusive doses.  Furthermore, define the variable  œ 

Z

P
djZ

+ »{0} as the number of extra vaccine doses administered for disease d œ DNE in all time 

periods t œ T such that Pdjt = 1, then constraint (4) is also redundant provided that the 

inequality in constraint (1) becomes an equality for all disease d œ DNE by subtracting the 

slack variable .  Therefore, if every disease has mutually exclusive doses, then 

VFSREP(O) simplifies to the following integer program VFSREP(O)-MED (to denote the 

optimization model where each disease d œ D has mutually exclusive doses).  

P
djZ

VFSREP(O)-MED 

  Minimize ( )( )∑ ∑∈ =
+

NE

d

Dd
R
dd

n

j
P
djd ZZ γρ

1          

  Subject to 
     ∑ ∑∈ ∈Tt Vv vdtvdjt IXP > 1     for all d œ DE, j = 1,2,…,nd, 
  

∑ ∑∈ ∈Tt Vv vdtvdjt IXP  –   = 1   for all d œ DP
djZ NE, j = 1,2,…,nd, 
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     ∑ ∑ –  = 0    for all d œ D
∈ ∈Tt Vv vdtvdt IXR R

dZ NE,     
     Xtv œ {0,1}       for all t œ T, v œ V,    

     œ ZP
djZ + »{0}     for all d œ DNE, j = 1,2,…,nd, 

     œ ZR
dZ + »{0}     for all d œ DNE.     

All of the diseases in the 2006 Recommended Childhood Immunization Schedule have 

mutually exclusive doses, though some diseases in past schedules did not have this property.  

For example, hepatitis B did not have mutually exclusive doses in the 2005 Recommended 

Childhood Immunization Schedule (CDC 2005).  Therefore, the simplification of 

VFSREP(O) to VFSREP(O)-MED has practical implications.    

There is an alternative formulation of VFSREP(O)-MED that has both theoretical and 

practical value.  To describe this formulation, define the binary decision variable pdj = 1 if the 

jth dose requirement for disease d œ D is satisfied, 0 otherwise (i.e., pdj  = 1 if and only if 

Σt∈TΣv∈V Pdjt Xtv Ivd > 1 for d  œ DE, j = 1,2,…,nd and Σt∈TΣv∈V Pdjt Xtv Ivd = 1 for d œ DNE, j = 

1,2,…,nd).  Therefore, an alternative formulation for VFSREP-MED (i.e., VFSREP(O)-

MED(A), where (A) denotes alternative) is the following integer program. 

VFSREP(O)-MED(A)   

Maximize ∑ ∑∈ =

d

Dd j dj1
π

n
            

         
  Subject to 
     ∑ ∑∈ ∈Tt Vv vdtvdjt IXP > pdj     for all d œ DE, j = 1,2,…,nd,  
  

∑ ∑∈ ∈Tt Vv vdtvdjt IXP = pdj     for all d œ DNE, j = 1,2,…,nd,  
  

     ∑ ∑  = 0    for all d œ D
∈ ∈Tt Vv vdtvdt IXR NE,     

     Xtv œ {0,1}      for all t œ T, v œ V,   

     pdj œ {0,1}       for all d œ D, j = 1,2,…,nd. 

 
Note that the objective function of VFSREP(O)-MED(A) is maximized when pdj = 1 for all 

diseases d œ D and doses j = 1,2,…,nd, and hence, if the optimal solution equals , then 

the j

dd nδ
1=Σ

th dose requirement for every disease d œ D is satisfied and no extra vaccine doses were 

administered for any disease d œ DNE.  Therefore, VFSREP(O)-MED(A) maximizes the 

number of doses that may be administered while forbidding extraimmunization.  

Furthermore, all the decision variables in VFSREP(O)-MED(A) are binary, which offers 
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theoretical advantages (see Nemhauser and Wolsey 1999).  For example, VFSREP(O)-

MED(A) shares a similar structure to the MAX-SAT problem (Hochbaum 1997) or, when 

dNE = d, to the Set-Partitioning problem (Nemhauser and Wolsey 1999), both of which have 

been well-studied.   

Moreover, assigning weights to the decision variables in VFSREP(O)-MED(A) offers 

another practical application.  Each vaccine has a known immunogenicity (the ability of the 

vaccine to immunize against a disease).   For example, the immunogenicity of a Hepatitis B 

vaccine is >95%, which means at least 95% of those children that receive the three dose 

series develop a protective antibody response against the disease (CDC 2003).  However, for 

some vaccines, the immunogenicity increases with each dose.  For example, for a Hepatitis B 

vaccine the immunogenicity is 30-50% after the first dose, 75% after the second, and >95% 

after the third dose (CDC 2003).  Therefore, if each objective function decision variable pdj 

in VFSREP(O)-MED(A) were weighted by immunogenicity, then VFSREP(O)-MED(A) 

would maximize the total immunogenicity of the vaccine formulary while restricting 

extraimmunization.   Specifically, define Immdj as the immunogenicity for disease d œ D after 

dose j = 1,2,…,nd is administered, and let wdj = 1 – Immdj be the corresponding objective 

function coefficient for decision variable pdj.  This assumes equivalent immunogenicities for 

each vaccine v œ V that immunizes against disease d œ D.  Weighting the decision variables 

accordingly would require the additional constraint pd1 < pd2 < ÿÿÿ < 
ddnπ for all diseases d œ D  

in the formulation of VFSREP(O)-MED(A).  

4.2 Computational Complexity 

This section presents the computational complexity of VFSREP and VFSREP(O).  In the 

worst case, these problems are shown to be intractable.  There are, however, some special 

cases that are solvable in polynomial time.  Theorem 7 states that VFSREP is NP-complete. 

THEOREM 7: VFSREP is NP-complete in the strong sense. 

PROOF:  First, VFSREP is in NP since given a set of guessed values for the binary variables 

Xtv, t œ T, v œ V, and Udt, d œ D, t œ T, Σt∈TΣv∈V Pdjt Xtv Ivd > 1 for all d œ D, j = 1,2,…,nd, 

Σt=1,2,…,t’Qdt Udt > for all d œ D and t’'dtm  œ T, and Σv∈V Qdt Xtv Ivd > Udt for all d œ D and t œ 
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T can all be checked in O(ut2d) time, and the constraints Σt∈TΣv∈V Rdt Xtv Ivd = 0 and Σt∈TΣv∈V 

Qdt Xtv Ivd = nd for all d œ DNE can be checked in O(utdNE) time. 

To show that VFSREP is NP-complete, a polynomial transformation from 1-in-3 3-SAT 

with 2-SAT to VFSREP can be constructed.   

Given an arbitrary instance of 1-in-3 3-SAT with 2-SAT, define a particular instance of 

VFSREP as follows: Set T = {1}; D = DNE = {1,2,…,m+n}, d = m+n; DE = «; V = 

{1,2,…,2n}, u = 2n; and 121 ==== +nmnnn L .  Let y1,y2,…,yn correspond to vaccines v = 

1,2,…,n, respectively, and 1-y1,1-y2,…,1-yn correspond to vaccines v = n+1,n+2,…,2n, 

respectively.  Let clauses C1,C2,…,Cm correspond to diseases d = 1,2,…,m, respectively, and 

Cm+1,Cm+2,…,Cm+n correspond to diseases d = m+1,m+2,…,m+n, respectively.  Set the binary 

parameters as follows: 

    Ivd =  
otherwise,

lyrespective ,,,2,1;,,2,1for  C clausein  is  literal  theif
0
1 nmdnvy dv +==

⎩
⎨
⎧ KK

I(n+v)d = . 
otherwise.

lyrespective ,,,2,1;,,2,1for  C clausein  is )-(1 literal if
0
1 nmdnvy dv +==

⎩
⎨
⎧ KK

Therefore, the vaccines that immunize against disease d = 1,2,…,m+n are determined by the 

literals in clause Cd.  Set Pdjt = 1 for d œ D, j = 1, and 1=t , and Qdt = 1 for d œ D, t = 1.  

Lastly, Rdt = 0 for d œ D, .  Clearly, this transformation can be made in polynomial time 

in the size of the arbitrary instance of 1-in-3 3-SAT with 2-SAT.  Furthermore, this 

transformation results in a particular instance of VFSREP where each d œ D has mutually 

exclusive doses, and since D

1=t

E = «, the only constraints for this particular instance are 

Σt∈TΣv∈V Pdjt Xtv Ivd = 1 for all d œ D, or simply, Σv∈V X1v Ivd = 1 for all d œ D. 

 To complete the proof, it is necessary to show that a yes for this particular instance of 

VFSREP implies a yes for the arbitrary instance of 1-in-3 3-SAT with 2-SAT, and a yes for 

the arbitrary instance of 1-in-3 3-SAT with 2-SAT implies a yes for this particular instance of 

VFSREP. 

 Suppose the answer to the particular instance of VFSREP is yes.  Then there exist values 

for the binary variables X1v, v œ V, such that Σv∈V  X1v Ivd = 1 for all d œ D.  Clearly, Ivd = 1 for 

v œ V, d œ D, corresponds to a literal (yj or 1– yj  for some j = 1,2,…,n) that is in clause Ci, i = 

1,2,…,m+n.  Therefore, if Σv∈V  X1v Ivd = 1 for all d œ D, then the binary variable with X1v = 1 
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for each constraint corresponds to the one literal that satisfies clause Ci, for i = 1,2,…,m+n.  

Moreover, Σv∈V  X1v Ivd = 1 for all d = m+1,m+2,…,m+n, and since vaccines v = k and v = n+k  

immunize against disease d = m+k, then the binary variables X1k and X1(n+k) exist together in 

the constraint for disease d = m+k.  This shows that both yj and 1-yj cannot be one for all j = 

1,2,…,n, which means there is a Boolean variable assignment that satisfies all m+n clauses 

with exactly one true literal, and hence, the answer to the arbitrary instance of 1-in-3 3-SAT 

with 2-SAT is yes.  

 Now suppose the answer to the arbitrary instance of 1-in-3 3-SAT with 2-SAT is yes.  

Then there exists a Boolean variable assignment that results in all m+n clauses being 

satisfied by exactly one literal.  For each Boolean variable yj, j = 1,2,…,n, there are two 

corresponding binary variables where one such variable (X1j) corresponds to yj and the other 

variable (X1(n+j)) corresponds to 1– yj.  Therefore, if yj = 1(0), set X1j = 1(0) and X1(n+j) = 0(1) 

for j = 1,2,…,n.  The claim is that these values for X1v, v = 1,2,…,2n, result in a yes answer 

for the particular instance of VFSREP.  Suppose not, that is, suppose there does not exist 

values for the binary variables X1v, v = 1,2,…,2n, such that Σv∈V  X1v Ivd = 1 for all d œ D.  As 

seen above, the constraints for d = m+1,m+2,…,m+n correspond to the jth literal pair yj and 1-

yj for j = 1,2,…,n, and hence, if these constraints are not satisfied then neither yj nor 1-yj 

equal one, which is a contradiction.  Therefore, for all possible binary variable values of X1v, 

v = 1,2,…,2n, there must exist some d = 1,2,…,m such that Σv∈V  X1v Ivd ∫ 1, and hence, Σv∈V  

X1v Ivd = 0 or Σv∈V  X1v Ivd > 1.  In either case, the binary variable values of X1v correspond to 

the Boolean variable values for yj, j = 1,2,…,n, and Ivi identifies the literals in clause Ci for v 

= 1,2,…,2n and i = 1,2,…,m.  Therefore, if for all possible binary variable values, Σv∈V  X1v Ivd 

= 0 for some disease d = i, then clause Ci is not satisfied, which contradicts 1-in-3 3-SAT 

with 2-SAT being yes.  Likewise, Σv∈V  X1v Ivd > 1 for some disease d = i implies clause Ci is 

satisfied by more than one literal, which, again, is a contradiction.  Therefore, the values for 

X1v, v = 1,2,…,2n, defined above result in a yes answer for the particular instance of 

VFSREP.  

 Furthermore, note that VFSREP is not a number problem (see Garey and Johnson 1979) 

since the only numbers occurring in an instance of VFSREP are the dose requirements nd for 

all d œ D, which are clearly bounded by t = |T|, and hence, by the length of the instance.  

Therefore, VFSREP is strongly NP-complete.  † 
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 The proof of Theorem 7 suggests several special cases of VFSREP that remain NP-

complete.  In particular, VFSREP remains NP-complete when there exists only one time 

period (i.e., t = 1), when extraimmunization is restricted for all diseases d œ D (i.e., DE = «), 

and when each disease requires only one dose of vaccine (i.e., nd = 1 for all diseases d œ D).  

Theorem 8 gives some additional special cases of VFSREP that remain NP-complete. 

THEOREM 8:  The following special cases of VFSREP are NP-complete in the strong 

sense: 

i) Only one vaccine exists (i.e., u  = 1 where Iud = 1 for all diseases d œ 
D), 

ii) The disease set has cardinality of at least three (i.e., d > 3), 
iii) Every vaccine is at least a trivalent vaccine (i.e., Val(v) > 3 for all 

vaccines v œ V) 
iv) Extraimmunization is restricted for only one disease (i.e., dNE = 1).  

PROOF:  To show i), ii), and iii) a polynomial transformation from 3DM to VFSREP is 

constructed, where d  = 3 and V = {v} is a trivalent vaccine  

 Given an arbitrary instance of 3DM define a particular instance of VFSREP as follows:  

Set T = M, D = DNE = {1,2,3}, DE = «, V = {v}, and n1 = n2 = n3 = q.  Let the q elements in 

W, Y, and Z correspond to the doses of disease d = 1, 2, 3, respectively.  Therefore, w1 

corresponds to the first dose of vaccine for disease d = 1, w2 corresponds to the second dose 

of vaccine for disease d = 1, and so forth through dose q.  Furthermore, since T = M, then the 

3-tuple mi corresponds to the ith time period.  Set the binary parameters Ivd = 1 for all d ∈ D.  

Set Pdjt = 1, d = 1, j = 1,2,…q, t = i, i = 1,2,…,k, if element wj œ mi, 0 otherwise; likewise, Pdjt 

= 1, d = 2, j = 1,2,…q, t = i, i = 1,2,…,k,  if element yj œ mi, 0 otherwise; and Pdjt = 1, d = 3, j 

= 1,2,…q, t = i, i = 1,2,…,k, if element zj œ mi, 0 otherwise.  Set Qdt = 1 and Rdt = 0 for all d œ 

D, t œ T since some dose of disease d œ D is permitted in time t œ T, and lastly, set mdt = 0 

for all d œ D, t = 1,2,…,k-1, and mdt = q for d œ D, t = k.  Clearly, this transformation can be 

done in polynomial time in the size of the arbitrary instance of 3DM. 

To complete the proof, it is necessary to show that a yes for the particular instance of 

VFSREP implies a yes for the arbitrary instance 3DM and a yes for the arbitrary instance 

3DM implies a yes for the particular instance of VFSREP. 

Suppose the answer to the particular instance of VFSREP is yes.  Then there exist values 

for the binary variables Xt1, t = 1,2,…,|M|, and Udt, d œ D, t œ T, such that  
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∑∈Tt tdjt XP 1 > 1 for all d ∈ D, j = 1,2,..,q;       (1) 

∑∈Tt dtdtUQ > q for all d œ D;         (2) 

Xt1 > Udt  for all d œ D, t œ T;        (3) 

∑∈Tt tdt XQ 1 = q (since nd  = q for all d œ D).       (4) 

Observe that in any time period t œ T, exactly one dose for each disease d ∈ D is 

permitted, that is, given d and t, Pdjt = 1 for some j = 1,2,…,q.  Therefore, constraints (2) and 

(3) imply Σt∈T Qdt Xt1 > q for all d œ D and becomes the single constraint Σt∈T Xt1 > q.  This 

observation along with constraint (4) (i.e., Σt∈T Qdt Xt1 = q) implies Σt∈T Xt1 = q, which also 

means constraints (1) are tight (i.e., Σt∈T Pdjt Xt1 = 1 for all d ∈ D, j = 1,2,..,q) or some dose 

would not be satisfied.  Therefore, the constraints for this particular instance of VFSREP 

become 

∑∈Tt tdjt XP 1 = 1 for all d ∈ D, j = 1,2,..,q;       (1’) 

∑∈Tt tX 1 = q.             (2’) 

The claim is that if Xtv = 1, then the 3-tuple m ∈ M corresponding to time period t œ T is 

part of the matching M’ ⊆ M.    Let M’ be the set of 3-tuples in M corresponding to Xtv = 1.  

Constraints (1’) ensure there exists exactly one time period t œ T that vaccine v is 

administered to satisfy each dose requirement for every d œ D.  Since the jth dose corresponds 

to some element in wj œ W, yj œ Y, or zj œ Z, then exactly one m œ M’ contains element wj, yj, 

and zj.  This means no two elements of M’ agree in any coordinate.  Constraint (2’) ensures 

that vaccine v is administered in exactly q time periods, and hence, |M’| = q.  Therefore, the 

answer to the arbitrary instance of 3DM is yes. 

Now suppose the answer to the arbitrary instance of 3DM is yes.  Then there exists a 

matching M’ ⊆ M such that |M’| = q and no two elements of M’ agree in any coordinate.  

Since each 3-tuple in M for the arbitrary instance of 3DM corresponds to a different time 

period for the particular instance of VFSREP, set Xtv = 1 if the corresponding 3-tuple m is in 

M’, and zero otherwise.  Since M’ is a matching, then each element of W, Y, and Z exists in 

exactly one m œ M’, and hence, each dose for each disease is satisfied exactly once in the 

time period corresponding to m (i.e., Σt∈T Pdjt Xtv = 1 for all d ∈ D, j = 1,2,…,q).  Moreover, 

|M’| = q, where no two elements of M’ agree in any coordinate, which implies Σt∈T Xtv = q for 
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all d ∈ D.  Extraimmunization occurs when either more than q doses of vaccine are 

administered for any disease d ∈ D or a dose of vaccine is administered in some time period 

where a dose is not required.  Clearly, the number of doses can not exceed q for any disease d 

∈ D since vaccine v is administered in exactly q time periods, and, by construction, every 

time period covers some dose for each disease d œ D (i.e., Rdt = 0 for all d œ D, t œ T).  

Therefore, no extraimmunization exists, and hence, the answer to the particular instance of 

VFSREP is yes.  

To show iv), a polynomial transformation from 3-SAT to VFSREP is constructed, where 

dNE  = 1. 

First, define n additional 2-SAT clauses within the arbitrary 3-SAT instance, 

specifically, clauses Cm+1, Cm+2,…,Cm+n, where clause Cm+k = (yk ¤ (1-yk)) for k = 1,2,…,n.  

Clearly, this does not change the solution of the 3-SAT instance since each Boolean variable 

is either true (1) or false (0), and this transformation can be done in linear time.   For 

VFSREP, Set T = {1,2,…,2n}, t = 2n; DE = {1,2,…,m}; DNE = {m+1} (i.e., dNE = 1), and d = 

m+1; V = {v}; and n1 = n2 = ÿÿÿ = nm = 1 and nm+1 = n (n being the number of Boolean 

variables).  Let y1,y2,…,yn correspond to the odd time periods 1,3,…,2n–1, respectively, and 

1-y1,1-y2,…,1-yn correspond to the even time periods 2,4,…,2n, respectively. Let clauses 

C1,C2,…,Cm correspond to diseases 1,2,…,m, respectively, and clause Cm+j correspond to 

dose j = 1,2,…,n for disease d = m+1, respectively.  Therefore, the 3-SAT clauses correspond 

to the diseases where extraimmunization is permitted and the 2-SAT clauses correspond to 

the n doses for disease d = m+1 where no extraimmunization is permitted.  Set the binary 

parameters as follows: 

    =  12,1, −=== ktjidP
otherwise,

lyrespective ,,,2,1;,,2,1for  C clausein  is  literal if
0
1 minky ik KK ==

⎩
⎨
⎧

       =  ktjidP 2,1, === otherwise.
lyrespective ,,,2,1;,,2,1for  C clausein  is )-(1 literal if

0
1 minky ik KK ==

⎩
⎨
⎧

Therefore, the times periods where the one dose of vaccine may be administered to immunize 

against disease d = i are determined by the literals in clause Ci, i = 1,2,…,m.  Set Qdt = Pd1t 

for all d œ DE and t œ T.  Furthermore, the first dose of vaccine for disease d = m+1 must be 

administered in time period t = 1 or t = 2 as determined by clause Cm+1, the second dose of 

vaccine for disease d = m+1 must be administered in time period t = 3 or t = 4 as determined 
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by clause Cm+2, etc., until the final dose (dose n) of vaccine for disease d = m+1, which must 

be administered in time period t = 2n – 1 or t = 2n, and hence, = = 

1 for k = 1,2,…,n, and 0, otherwise.  Set I

12,,1 −==+= ktkjmdP ktkjmdP 2,,1 ==+=

vd = 1 for all d œ D and v = 1.  Lastly, Qdt = 1 and 

Rdt = 0 for d = m+1, t œ T.  Clearly, this transformation can be made in polynomial time in 

the size of the arbitrary instance of 3-SAT.  Furthermore, this transformation results in a 

particular instance of VFSREP where each d œ D has mutually exclusive doses.  

It remains to show that a yes for this particular instance of VFSREP implies a yes for the 

arbitrary instance of 3-SAT, and a yes for the arbitrary instance of 3-SAT implies a yes for 

this particular instance of VFSREP. 

Suppose the answer to the particular instance of VFSREP is yes.  Since all d œ D in the 

particular instance of VFSREP have mutually exclusive doses, then there exist values for the 

binary variables Xt1, t œ T, such that Σt∈T Pdjt Xt1  ≥ 1 for all d ∈ DE, j = 1, and Σt∈T Pdjt Xt1 = 1 

for d = m+1, j = 1,2,…,n.  Clearly, Pdjt = 1 for d œ D, j = 1,2,…n, t œ T, corresponds to a 

literal (yk or 1-yk  for some k = 1,2,…,n) that is in clause Ci, i = 1,2,…,m+n.  Therefore, if 

Σt∈T Pdjt Xt1  ≥ 1 for all d ∈ DE, then the binary variables with Xt1 = 1 for each constraint 

corresponds to literals that satisfy clause Ci, for i = 1,2,…,m.  Similarly, if Σt∈T Pdjt Xt1 = 1 for 

d = m+1, j = 1,2,…,n, then the binary variable with Xt1 = 1 for each constraint corresponds to 

the one literal that satisfies clause Ci, for i = m+1,m+2,…,m+n.  Moreover, since the jth dose 

of vaccine v must be administered in time period t = 2j – 1 or time period t = 2j, to immunize 

against disease d = m+1, the binary variables X(2j-1)1 and X(2j)1 exist together in the constraints 

for disease d = m+1, j = 1,2,…,n.  This shows that both yk and 1-yk cannot be one for all k = 

1,2,…,n, which means there is a Boolean variable assignment that satisfies all m + n clauses, 

hence the answer to the arbitrary instance of 3-SAT is yes.  

Now suppose the answer to the arbitrary instance of 3-SAT is yes.  Then there exists a 

Boolean variable assignment that results in all m clauses being satisfied.  For each Boolean 

variable yk, k = 1,2,…,n, there are two corresponding binary variables where one such 

variable (X(2k-1)1) corresponds to yk and the other variable (X(2k)1) corresponds to 1- yk.  

Therefore, if yk =1 (0), set X(2k-1)1 = 1 (0) and X(2k)1 = 0 (1).  The claim is these values for Xt1, t 

œ T, result in a yes answer for the particular instance of VFSREP.  Suppose not, that is, 

suppose there does not exist values for the binary variables Xt1, t œ T, such that Σt∈T Pdjt Xt1  ≥ 

1 for all d ∈ DE and Σt∈T Pdjt Xt1 = 1 for d = m+1, j = 1,2,…,n.  As before, the constraints Σt∈T 
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Pdjt Xt1 = 1 for d = m+1, j = 1,2,…,n correspond to the kth literal pair yk and 1-yk.  Therefore, if 

these constraints are not satisfied then neither yk nor 1-yk equal one, which is a contradiction, 

and hence, for all possible binary variable values of Xt1, t œ T, there must exist some d ∈ DE 

such that Σt∈T Pdjt Xt1  = 0 when j = 1.  However, the binary variable values of Xt1 correspond 

to the Boolean variable values for yk, k = 1,2,…,n, and Pdjt identifies the literals in clause Ci 

for t œ T, j = 1, i = 1,2,…,m.  Therefore, if for all possible binary variable values, Σt∈T Pdjt Xt1  
= 0 for some disease d = i and j = 1, then clause Ci is not satisfied, which contradicts 3-SAT 

being yes.  Therefore, the values for Xt1, t œ T, defined above result in a yes answer for the 

particular instance of VFSREP.   

Furthermore, note that VFSREP for special cases i)-iv) are not number problems (see 

Garey and Johnson 1979) since the only numbers are the dose requirements nd for all d œ D, 

which are clearly bounded by t = |T|, and hence, by the length of the instance.  Therefore, 

these special cases of VFSREP are strongly NP-complete.  † 

 Theorems 7 and 8 imply VFSREP remains NP-complete even when the sets T, D, DNE, 

and V, or when the dose (nd, d œ D) parameters are significantly restricted.  In addition, since 

VFSREP is NP-complete, then the corresponding optimization problem VFSREP(O) is NP-

hard.  Furthermore, all of the diseases d œ D in the polynomial transformation in the proof of 

Theorem 7 have mutually exclusive doses, and hence, VFSREP(O)-MED is also NP-hard.  

Another facet to the complexity of VFSREP lies in the flexibility of the childhood 

immunization schedule.  In general, VFSREP becomes more difficult if the doses for each 

disease may be administered in several time periods (i.e., for a given disease d œ D and dose 

j = 1,2,…,nd, Pdjt = 1 for multiple time periods t œ T).  Recall that a childhood immunization 

schedule as tight if every required dose of vaccine for each disease d ∈ D may be 

administered in exactly one time period (i.e., for dose j = 1,2,…,nd and disease d ∈ D,  Pdjt = 

1 for exactly one time period t œ T).  A tight schedule implies that all diseases d œ D have 

mutually exclusive doses, since dose j = 1,2,…,nd may be administered in exactly one time 

period, and hence, the time period t œ T when Pdjt = 1 is unique.  Furthermore, define a 

childhood immunization schedule as aligned if given any disease d’ œ D and dose j = 

1,2,…,nd’, Td’j = {t œ T: Pd’jt = 1} = Tdk = {t œ T: Pdkt = 1} for every disease d œ D and dose k 

= 1,2,…,nd  such that Td’j … Tdk ∫ « (i.e., the set of time periods when dose j may be 

administered for disease d’ œ D are identical to the set of time periods when dose k may be 
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administered for every disease d œ D such that the set of time periods when dose j may be 

administered for disease d’ œ D  overlap with the set of time periods when dose k may be 

administered for every disease d œ D).  Moreover, a childhood immunization schedule is 

completely aligned if nd = N for all diseases d œ D and Td’j = {t œ T: Pd’jt = 1} = Tdj = {t œ T: 

Pdjt = 1} for every disease d’, d œ D and dose j = 1,2,…,N.  By these definitions, both tight 

and/or aligned childhood immunization schedules are less flexible.  Figure 6 displays a tight 

childhood immunization schedule that is also completely aligned, and Figure 7 displays an 

aligned childhood immunization schedule. 

TIME PERIOD  
DISEASE 1 2 3 4 5 6 

1 Dose 1 Dose 2  Dose 3  Dose 4 
2 Dose 1 Dose 2  Dose 3  Dose 4 
3 Dose 1 Dose 2  Dose 3  Dose 4 

Figure 6: A Tight and Completely Aligned Childhood Immunization Schedule 

 
TIME PERIOD  

DISEASE 1 2 3 4 5 6 
1 Dose 1 Dose 2  Dose 3 
2 Dose 1    Dose 2 
3  Dose 1  Dose 2 

Figure 7: An Aligned Childhood Immunization Schedule 

By design, VFSREP is a feasibility problem constrained by dosage requirements for all 

diseases d œ D and restrictions on extraimmunization for all diseases d œ DNE, and hence, 

when there is no restriction on extraimmunization (i.e., DNE = «), then VFSREP is solvable 

in polynomial time.  In fact, the trivial solution Xtv = 1 for all time periods t œ T and vaccines 

v œ V satisfies all dose requirements, assuming that there exists at least one vaccine v œ V 

such that Ivd = 1 for all diseases d œ D.   

 Other special cases of VFSREP that are solvable in polynomial time occur when the 

valency of the vaccine set is limited to monovalent vaccines,  the number of vaccines that 

immunize against each disease is limited to two vaccines, the childhood immunization 

schedule is tight or aligned, and when the number of diseases is less than three.  To see this, 

first consider limitations on the valency of the vaccine set.  If every vaccine v œ V is 

monovalent, then VFSREP is solvable in O(td) time.  Lemma 6 considers a stronger result 

for the case when all diseases d œ D have a corresponding monovalent vaccine v œ V. 
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LEMMA 6:  Given any disease d œ D, if there exists a vaccine v ∈ V such that Ivd = 1 and 

Val(v) = 1,  then VFSREP is solvable in O(td) time.    

PROOF: The feasible vaccine schedule that restricts extraimmunization for all diseases d œ 

DNE may be found by looping through the set of time periods and diseases and administering 

the corresponding monovalent vaccine for dose j = 1,2, …,nd, in the first time period when 

Pdjt = 1.  † 

 Define the linear programming (LP) relaxation of VFSREP(O)-MED as the LP model of 

VFSREP(O)-MED along with the relaxed binary variable constraint  0 < Xtv < 1 for all time 

periods t œ T and vaccines v œ V and, for all diseases d œ DNE, the relaxed integer variable 

constraints P
djZ > 0 for dose j = 1,2,…,nd, and  P

dZ > 0.  Theorem 9 states a similar result for 

VFSREP(O)-REP to Lemma 6 for the case when all vaccines v œ V are monovalents.  

THEOREM 9:  If Val(v) = 1 for all vaccines v œ V, then the LP relaxation of VFSREP(O)-

MED yields an optimal integer solution. 

PROOF:  This results assumes that the time periods where Pdjt  = 1 for all diseases d œ D, 

and doses j =1,2,…,nd, are consecutive.  This assumption holds in the 2006 Recommended 

Childhood Immunization Schedule, as well as all the randomly generated childhood 

immunization schedules presented in Section 4.4.   

Suppose for a given instance of VFSREP(O)-MED that Val(v) = 1 for all vaccines v œ V.  

Consider the LP relaxation of VFSREP(O)-MED and denote its constraint matrix by A.  If A 

is totally unimodular, then every basic feasible solution is integer, provided the right-hand-

side (rhs) vector is integer (Ahuja et al. 1993).  Clearly, the rhs vector in the LP relaxation of 

VFSREP(O)-MED is integer, and hence, it remains to show that A is indeed totally 

unimodular.   

 By definition, A is totally unimodular if every square submatrix of A has determinant 0, 

1, or -1.  It is well known that A is totally unimodular if the non-zero elements in each row 

are in consecutive columns (known as the consecutive ones property).  Without loss of 

generality, assume that there is exactly one vaccine v œ V that provides immunization against 

each disease d œ D.  Furthermore, it is sufficient to consider only the columns of A 

corresponding to the decision variables Xtv, t œ T, v œ V, since the remaining columns 

correspond to slack variables, which have exactly one non-zero row, and hence, may be 

ordered at will within the matrix A.  Moreover, assume the columns of A are ordered 
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according to the set V.  For example, the first t columns of A correspond to the decision 

variables associated with the first vaccine, (i.e., column t corresponds to decision variable 

Xt1), the second t columns of A correspond to the decision variables associated with the 

second vaccine, and so on.  

 Now consider some disease d œ D, and let v œ V be a vaccine such that Ivd = 1.  Since 

Val(v) = 1, then the only non-zero entries in any row of A that corresponds to disease d œ D 

must be in the t consecutive columns corresponding to vaccine v œ V.  By assumption, the 

time periods when Pdjt = 1 for disease d œ D, dose j = 1,2,…,nd, are consecutive, and hence, 

the rows corresponding to each dose for disease d œ D have the consecutive ones property.  

Furthermore, if d œ DNE and if there exists some time period t œ T such that Pdjt  = 0 for all j 

= 1,2,…,nd, which means that no dose for disease d œ D is permitted in time period t œ T, 

then Rdt = 1.  Therefore, every row of A has a one in the column corresponding to the 

variable Xtv, where Rdt = 1, and hence, the columns corresponding to these variables may be 

reordered so that the consecutive ones property is satisfied.  Therefore, A is totally 

unimodular, since the non-zero elements in each row of A are in consecutive columns.  † 

 Theorem 9 also implies that VFSREP(O)-MED is solvable in polynomial time when all 

vaccines v œ V are monovalents, since linear programming is solvable in polynomial time 

(Bazaraa et al. 1990).  Moreover, Theorem 9 may be used to show that the heuristics 

presented in Section 4.3 return the optimal solution when all vaccines v œ V are monovalents. 

 Given a tight, aligned, or completely aligned childhood immunization schedule and a 

vaccine set where there are at most two vaccines that immunize against each disease d œ D 

(i.e., Σv∈V Ivd < 2 for all diseases d œ D), Lemmas 7 and 8 yield other special cases of 

VFSREP that are solvable in polynomial time.   

LEMMA 7:  Given a tight childhood immunization schedule, if Σv∈V Ivd < 2 for all diseases d 

∈ D, then VFSREP is solvable in O(t(d+dNE)2) time.    

PROOF:  Consider some time period t œ T.  Since the childhood immunization schedule is 

tight, if dose j for disease d œ D may be administered (i.e., Pdjt = 1), then it must be 

administered in time period t œ T.  Let Dt = {d œ D: Pdjt = 1 for some j = 1,2,…,nd} and Vt = 

{v œ V: Ivd = 1 and d œ Dt} for t œ T.  Without loss of generality, assume Σv∈V Ivd = 2 for all 

diseases d ∈ Dt, otherwise Xtv = 1 for v œ Vt such that Ivd = 1. For each disease d œ Dt, define 

a clause (Xtv, Xtv’), where v, v’ œ Vt such that Ivd = Iv’d = 1, since Σv∈V Ivd = 2, and for all 
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diseases d ∈ Dt … DNE, define an additional clause (1 – Xtv, 1 – Xtv’).  Furthermore, for all 

diseases d œ DNE\Dt, set Xtv = 0 for all v œ Vt such that Ivd = 1.  Therefore, time period t œ T 

yields a 2-SAT problem instance with at most u Boolean variables and at most d+dNE clauses 

since every disease (clause) must be “satisfied” by at least one vaccine.  The additional 

clause for each disease d ∈ Dt … DNE ensures that exactly one vaccine is administered for that 

disease.  This transformation from VFSREP to 2-SAT is linear in the number of clauses m < 

d+dNE.  Since a 2-SAT problem is solvable in O(m2) time, then finding the feasible vaccine 

set that restricts extraimmunization in time period t œ T is solvable in O((d+dNE)2) time.  

Applying this result for all time periods t œ T equates to at most t 2-SAT problem instances, 

and hence, the overall complexity for this special case is O(t(d+dNE)2).  †   

LEMMA 8:  Given an aligned or completely aligned childhood immunization schedule, if 

Σv∈V Ivd < 2 for all diseases d ∈ D, then VFSREP is solvable in O(t(d+dNE)2) 

time or O((d+dNE)2) time, respectively.    

PROOF:  Suppose the childhood immunization schedule is completely aligned, and consider 

some time period t œ T such that Pdjt = 1 for some dose j = 1,2,…,nd and disease d œ D.  

Since the childhood immunization schedule is completely aligned, then Pdjt = 1 for all 

diseases d œ D.  Without loss of generality, assume Σv∈V Ivd = 2 for all diseases d ∈ D, 

otherwise Xtv = 1 for v œ V such that Ivd = 1. For each disease d œ D, define a clause (Xtv, 

Xtv’), where v, v’ œ V such that Ivd = Iv’d = 1, since Σv∈V Ivd = 2, and for all diseases d ∈  DNE, 

define an additional clause (1 – Xtv, 1 – Xtv’).  Therefore, time period t œ T yields a 2-SAT 

problem instance with u Boolean variables and d+dNE clauses since every disease (clause) 

must be “satisfied” by at least one vaccine.  The additional clause for each disease d ∈ DNE 

ensures that exactly one vaccine is administered for that disease.  This transformation from 

VFSREP to 2-SAT is linear to the number of clauses m < d+dNE.  Since a 2-SAT problem is 

solvable in O(m2) time, then finding the feasible vaccine set that restricts extraimmunization 

in time period t œ T is solvable in O((d+dNE)2) time.  Furthermore, each time period t œ T 

such that Pdjt = 1 yields an identical 2-SAT problem instance, and hence, requires a single 

solve.  The solution of this 2-SAT problem instance is then applied in some time period such 

that Pdjt = 1 for all diseases d œ D and doses j = 1,2,…,nd.  Therefore, the complexity for this 

special case is O((d+dNE)2).  Similarly, if the childhood immunization is aligned, then there 
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are at most t unique 2-SAT problem instances, and hence, the overall complexity for this 

special case is O(t(d+dNE)2).  † 

Lemmas 6, 7, and 8 and Theorem 9 imply VFSREP is solvable in polynomial time if the 

vaccine set is restricted and if the childhood immunization schedule is tight, aligned, or 

completely aligned.  Moreover, when d = 1, VFSREP is solvable in polynomial time (i.e., 

O(t) time) since it is a special case of Lemma 6.  VFSREP is also solvable in polynomial 

time when d = 2 using the dynamic programming algorithm presented in Section 4.3.1, since 

the subproblem solved at each stage of the dynamic program can be solved as a 2-SAT 

problem instance, which is solvable in polynomial time (Garey and Johnson 1979).   

 Table 5 summarizes the complexity results for VFSREP, where n = the dose requirement 

for each disease d œ D (i.e., nd = n for all d œ D). 

Table 5: Summary of Complexity Results for VFSREP 

 Time 
Periods 

Diseases—
(General Set) 

Diseases—
(Extraimmunizat

ion allowed) 

Diseases— 
(with no 

Extraimmunizati
on) 

Vaccines # of Doses 
for each 
Disease 

 S = T S = D S = DE S =DNE S = V n = |S| 
 S = ∆ Undefined Undefined NP-Comp Polynomial Infeasible Polynomial
|S| = 1 NP-comp Polynomial ‡ NP-comp NP-comp NP-comp 
|S| = 2 ‡ Polynomial  ‡ ‡ ‡ 
|S| > 3  NP-comp     

4.3 Algorithms and Heuristics 

This section discusses both exact algorithms and heuristics for VFSREP(O).  Section 4.3.1 

presents an exact dynamic programming algorithm for VFSREP(O).  Section 4.3.2 presents 

two rounding heuristics (Rounding and MAX Rounding) for VFSREP(O)-MED.  Section 

4.3.3 presents a Greedy heuristic for VFSREP(O)-MED.  Section 4.3.4 presents a 

Randomized Rounding heuristic for VFSREP(O)-MED(A).  Lastly, Section 4.3.5 presents a 

MAX Rounding and Greedy heuristic for VFSREP(O).  Some of the heuristics are shown to 

be approximation algorithms, which provide an approximation bound on the value of the 

heuristic solution. 
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4.3.1 Dynamic Programming Algorithm 

In Section 4.1, VFSREP(O) is modeled as an integer programming (IP) problem, and hence, 

may be solved using several well-known integer optimization techniques (such as branch and 

bound; see Nemhauser and Wolsey 1999).  Another useful exact algorithm is dynamic 

programming (DP).  This section presents and analyzes a DP algorithm for VFSREP(O) 

similar to the DP presented in section 3.3.1 for VFSLBP(O).  

 Given the stated set of inputs for VFSREP(O) (i.e., set of time periods T, set of diseases 

D, DE, and DNE, set of vaccines V, required number of doses nd for each d œ D, and binary 

parameters I, P, Q,  and R), the DP algorithm solves VFSREP(O) one period at a time 

beginning at the first time period (i.e., t = 1), and steps through each time period in T until t = 

t.  Therefore, the set T defines the stages of the DP algorithm.  In addition to the minimum 

dose parameter mdt, d œ D, t œ T, define Mdt as the maximum number of doses of a vaccine 

required for disease d œ D through time period t œ T. 

 Define a state in the DP algorithm as the number of required doses of a vaccine that have 

been administered for each disease through time period t œ T.  Formally, a state in time 

period t œ T is a d-dimensional vector St = (St1,St2,…,Std), where Std is the number of required 

doses of a vaccine that have been administered for disease d = 1,2,…,d, in time periods 

1,2,…,t.  Therefore, the state space in time period t œ T is Wt = {St œ Zd : mdt < Std <  Mdt for 

all d œ D}, where Z denotes the set of all integers.  The decision in time period t œ T is which 

vaccines to administer that immunize against the diseases requiring vaccination in this time 

period (i.e., the binary decision variables Xtv), and is represented by the d-dimensional binary 

vector Yt = (Yt1,Yt2,…,Ytd), where Ytd = 1 implies Xtv = 1 for some vaccine v œ V that 

immunizes against disease d œ D  (i.e., Ivd = 1).  The decision space in time period t œ T is 

defined as Ft = {Yt œ Bd : 0 < Ytd <  Mdt – md(t-1) for all d œ D}, where B denotes the binary 

set {0,1}.  These states and decisions define the DP algorithm system dynamics:  St = St-1 + 

Yt.  Since Yt œ Ft is a binary vector, a state St œ Wt is accessible from state St-1 œ Wt-1 only if 

St – St-1 is also a binary vector.  Furthermore, Yt œ Ft being binary eliminates the necessity of 

the binary decision variables Udt, d œ D, t œ T, because the vaccines administered in time 

period t œ T satisfy at most one dose for a particular disease. 

 Given that Yt = St – St-1, then a transition from state St-1 œ Wt-1 to state St œ Wt  requires 

that a dose of vaccine be administered in time period t œ T for each disease in the set Dt = {d 
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œ D : Ytd = 1}.  The sets Vt = {v œ V: Ivd = 1 and d œ Dt} (i.e., the set of vaccines that 

immunize against any disease that requires vaccination in time period t œ T) and Dt define a 

sub-instance of VFSREP(O), termed IP(Yt).  To describe IP(Yt), the following definitions are 

needed.  Let   

- DEt = DE … Dt  and DNEt = DNE … Dt for any time period t œ T, 

- œ ZP
dtZ + »{0} be the number of extra doses of vaccine administered for disease d œ 

DNE in time period t œ T such that Ytd = 1, 

- œ ZR
dtZ + »{0} be the number of extra doses of vaccine administered for disease d œ 

DNE in time period t œ T such that Ytd = 0, (i.e., for disease d œ DNE\DNEt). 

The specific sub-instance for VFSREP(O) for time period t œ T and decision Yt œ Ft is given 

by 

IP(Yt)  

Minimize  ∑∑ ∈∈
+

NEtNENEt DDd
R
dtdDd

P
dtd ZZ

\
γρ     

  Subject to 

     X
tv V∈∑ tv  Ivd  > 1       for all d œ DEt, 

     X
tv V∈∑ tv  Ivd  –  = 1      for all d œ DP

dtZ NEt, 

     X
tv V∈∑ tv  Ivd  –  = 0      for all d œ DR

dtZ NE\ DNEt, 

     Xtv œ {0,1}        for all v œ Vt,   

     , œ ZP
dtZ R

dtZ + »{0}      for all d œ DNE. 

 To characterize the cost of decision Yt œ Ft, which is the cost of transitioning from state 

St-1 œ Wt-1 in time period (t – 1) œ T to state St œ Wt  in time period t œ T, define the one-

period cost function Ct(St-1, Yt) as the amount of extraimmunization in time period t œ T 

given state St-1 œ Wt-1 and decision Yt œ Ft.   Note, however, that this one-period cost in time 

period t œ T depends only on decision Yt œ Ft, and hence, the optimal value of IP(Yt) = Ct(St-

1, Yt) = Ct(Yt).  Therefore, the optimal one-period value over all possible decisions in time 

period t œ T is given by C
tt Φ∈ 

min
Y

t(Yt).    

 Define Zt(St) as the minimum weighted (as defined by rd and gd for disease d œ DNE) 

amount of extraimmunization of a vaccine formulary that immunizes against all diseases 

through time period t œ T subject to the number of required doses at the end of time period t 
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œ T being equal to St œ Wt .  Therefore, the DP optimality equation is given by the recurrence 

relation 

Zt(St) = {C
ttttttt YSSSY +=Ω∈Φ∈ −−− 111 :, 

min t(Yt) + Zt-1(St-1)}. 

Furthermore, the minimum weighted amount of extraimmunization that satisfies a given 

childhood immunization schedule is given by 

z* = Z
ττ Ω∈S

min t(St), 

where Wt is the state space for the final time period t œ T.  The DP algorithm for 

VFSREP(O) is now formally given. 

Dynamic Programming Algorithm for VFSREP(O) 

Step 1. Initialize: 
a. Initial state, S0 ≠ 0 (the d-dimensional zero vector) 
b. Initial extraimmunization contribution, Z0(S0) ≠ 0 
c. Set md0, Md0 ≠ 0 for all d œ D 
d. Initial stage, t ≠ 1 

Step 2. Compute  
Zt(St) = {C

ttttttt YSSSY +=Ω∈Φ∈ −−− 111 :, 
min t(Yt) + Zt-1(St-1)} 

for each state St œ Wt. 
Step 3. If t < t, then t ≠ t + 1 and return to Step 2.  Else, stop and return z* = 

Z
ττ Ω∈S

min t(St). 

  

Example 9 

This demonstrates the DP algorithm for VFSREP(O) for the childhood immunization 

schedule depicted in Figure 5.   

Recall DNE = {1}, V = {1 = {1,2,3}}, and the minimum dose vectors for each disease d œ 

D are m1 = (0,0,1,2,3,3,3,4), m2 = (0,0,1,2,2,2,2,3), and m3 = (0,0,0,0,0,0,0,1), where mdt is the 

tth component, t = 1,2,…,8, of vector md for disease d = 1,2,3.  Likewise, the maximum dose 

vectors for each disease d œ D are M1 = (0,0,1,2,3,3,4,4), M2 = (0,0,1,2,3,3,3,3), and M3 = 

(0,0,0,0,0,1,1,1), where Mdt is the tth component, t = 1,2,…,8, of vector Md for disease d = 

1,2,3.  These parameters yield the following state and decision spaces:  

 

State Space for each Time Period  
W1 W2 W3 W4 W5 W6 W7 W8

{(0,0,0)} {(0,0,0)} {(1,1,0)} {(2,2,0)} {(3,2,0), {(3,2,0), {(3,2,0), {(4,3,1)}
     (3,3,0)} (3,2,1), (3,2,1),   
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        (3,3,0), (3,3,0),   
        (3,3,1)} (3,3,1)}   
          (4,2,0),   
          (4,2,1),   
          (4,3,0),   
          (4,3,1)}   

Decision Space for each Time Period  
F1 F2 F3 F4 F5 F6 F7 F8

{(0,0,0)} {(0,0,0)} {(1,1,0)} {(1,1,0)} {(1,0,0), {(0,0,0), {(0,0,0), {(0,0,0), 
    (1,1,0)} (0,0,1), (0,0,1), (0,0,1), 
        (0,1,0), (0,1,0), (0,1,0), 
         (0,1,1)} (0,1,1), (0,1,1), 
           (1,0,0), (1,0,0), 
           (1,0,1), (1,0,1), 
           (1,1,0), (1,1,0), 
           (1,1,1)} (1,1,1)}. 

 

Note that for the given disease and vaccine set,  

}1,0{,  where),,1(or  )0,0,0(when 
0},1,0{,   where),,0(when  

0
1

)(
∈==

≠=∈=

⎩
⎨
⎧

=
babaYY
bababaY

YC
tt

t
tt  for all t œ T. 

Applying the DP algorithm, where W0 ={S0}= {(0,0,0)} and Z0(S0) = 0, implies for time 

period (stage): 

t = 1:  

Z1((0,0,0) = C1((0,0,0)) + Z0((0,0,0)) = 0 + 0 = 0, 

t = 2: 

Z2((0,0,0)) = C2((0,0,0)) + Z1((0,0,0)) = 0 + 0 = 0, 

t = 3: 

Z3((1,1,0)) = C3((1,1,0) + Z2((0,0,0)) = 0 + 0 = 0,  

t = 4: 

Z4((2,2,0)) = C4((1,1,0)) + Z3((1,1,0)) = 0 + 0 = 0, 

t = 5: 

Z5((3,2,0)) = C5((1,0,0)) + Z4((2,2,0)) = 0 + 0 = 0, 

Z5((3,3,0)) = C5((1,1,0)) + Z4((2,2,0)) = 0 + 0 = 0, 

t = 6:  

 Z6((3,2,0)) = C6((0,0,0)) + Z5((3,2,0)) = 0 + 0 = 0 

 Z6((3,3,0)) = min{C6((0,0,0)) + Z5((3,3,0));C6((0,1,0))+ Z5((3,2,0))} = min{0+0,1+0}= 0, 
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 Z6((3,2,1)) = C6((0,0,1)) + Z5((3,2,0)) = 1 + 0 = 1, 

Z6((3,3,1)) = min{C6((0,0,1) + Z5((3,3,0)); C6((0,1,1) + Z5((3,2,0))} = min{1+0,1+0} = 1, 

t = 7: 

Z7((3,2,0)) = C7((0,0,0)) + Z6((3,2,0)) = 0 + 0 = 0, 

Z7((3,2,1)) = min{C7((0,0,1)) + Z6((3,2,0)); C7((0,0,0))+ Z6((3,2,1))}= min{1+0,0+1}= 1, 

Z7((3,3,0)) = min{C7((0,0,0)) + Z6((3,3,0));C7((0,1,0))+ Z6((3,2,0))} = min{0+0,1+0}= 0, 

Z7((3,3,1)) = min{C7((0,0,0)) + Z6((3,3,1));C7((0,1,1)) + Z6((3,2,0)); C7((0,1,0)) +  

Z6((3,2,1)); C7((0,0,1) + Z6((3,3,0))} = min{0 + 1,1 + 0,1 + 1,1 + 0} = 1, 

Z7((4,2,0)) = C7((1,0,0)) + Z6((3,2,0)) = 0 + 0 = 0, 

Z7((4,2,1)) = min{C7((1,0,1)) + Z6((3,2,0));C7((1,0,0)) + Z6((3,2,1)) = min{0+0,0+1} = 0, 

Z7((4,3,0)) = min{C7((1,1,0)) + Z6((3,2,0));C7((1,0,0))+ Z6((3,3,0))} = min{0+0,0+0}= 0, 

Z7((4,3,1)) = min{C7((1,1,1) + Z6((3,2,0));C7((1,1,0) + Z6((3,2,1));C7((1,0,1) +  

Z6((3,3,0)); 7((1,0,0) + Z6((3,3,1))} = min{0 + 0,0 + 1,0 + 0,0 + 1} = 0, 

t = 8: 

Z8((4,3,1)) = min{C8((0,0,1) + Z7((4,3,0));C8((1,0,1) + Z7((3,3,0));C7((1,1,1) +  

Z7((3,2,0));C8((0,1,1) + Z7((4,2,0));C8((1,1,0) + Z7((3,2,1));C8((1,0,0) +  

Z7((3,3,1));C8((0,1,0) + Z7((4,2,1));C8((0,0,0) + Z7((4,3,1))} 

   = min{1 + 0,0 + 0,0 + 0,1 + 0,0 + 1,0 + 1,1 + 0,0 + 0} = 0. 

Therefore, the minimum amount of extraimmunization for this vaccine formulary is 0 (i.e., 

there exists a feasible immunization schedule that restricts extraimmunization).  Furthermore, 

one possible vaccination schedule (highlighted above) that restricts extraimmunization is to 

administer vaccine v = 1 in time periods 3, 4, 5, and 7.  Ñ 

To determine the complexity of this DP algorithm, suppose that the IP(Yt) problem 

instance with d diseases and u vaccines can be solved in O(TIP) time.  Furthermore, define 

SMax to be the maximum number of possible states within any time period t œ T.  Each time 

period requires O((SMax)2ÿTIP) time, and hence, with t time periods, the DP algorithm for 

VFSREP(O) executes in O(t(SMax)2ÿTIP) time.  The fact that IP(Yt) for t = 1 with d diseases 

and u vaccines is NP-hard follows from Theorem 7, and hence, a polynomial (or even 

pseudo-polynomial) algorithm is unlikely to exist, unless P = NP.  The DP algorithm’s worst 

case complexity may be improved, however, since each IP(Yt) instance depends only on the 

decision vector Yt œ Ft.  Therefore, IP(Yt) for decision Yt œ Ft only needs to be solved once.  
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It can be shown that the complexity of solving for all possible decisions is O(ud2d).  This 

means that for each time period t œ T, the complexity of Step 2 becomes O(d(SMax)2), and 

hence, the DP algorithm has a O(td(SMax)2 + ud2d) worst case time complexity, which is an 

improvement over O(t(SMax)2ÿTIP) when SMax is large.  To exploit this added efficiency, the 

implementation of the DP algorithm used for the computational analysis reported in Section 

4.4 employs a ‘branch and remember’ recursive algorithm to find the optimal value for each 

IP(Yt) instance.  Therefore, IP(Yt) need only be computed once using the recursive algorithm 

Single-Period-IP.  This recursive algorithm assumes rd = gd for all diseases d œ DNE.  

Initially, the given set of diseases for Yt is Dt, and hence, D’ = Dt.    

Single-Period-IP(D’)    
If D’ = «, return 0 as the solution value 
If IP(Yt) for D’ = {d œ D : Ytd = 1} has been solved previously, return its optimal value 
Select a disease d œ D’ that requires immunization 
Let V’ = {v œ V: Ivd = 1} (set of vaccines v œ V that immunize against disease d œ D’) 
Set LowestPenalty = +¶ 
For each vaccine v œ V’  

Let D* = D’ \ {d œ D’: Ivd = 1} 
Penalty = Single-Period-IP(D*) (find the optimal penalty for the set of diseases D*) 
Let DNEv = {d œ D′ : d œ DNE, Ivd = 1} 
Set Penaltyv = 0 
For each disease d œ DNEv 
 Penaltyv = Penaltyv + gd 
If Penalty + Penaltyv < LowestPenalty 

   LowestPenalty = Penalty + Penaltyv
  Store LowestPenalty for D’ (save the optimal solution for the set of diseases D’) 

Return LowestPenalty 
 
 Despite its exponential worst case complexity run time, the DP algorithm for 

VFSREP(O) offers several advantages as described in Section 3.3.1 for VFSLBP(O), and is 

efficient in practice (see Section 4.4) with the 2006 Recommended Childhood Immunization 

Schedule, since this schedule yields a reasonable state space, and the IP(Yt) instances in each 

time period t œ T are small (and, in many cases, are solvable in polynomial time).   

4.3.2 Rounding Heuristics 

The worst case complexity for the DP algorithm motivates the need for heuristics.  This 

section presents the Rounding and MAX Rounding heuristics for VFSREP(O)-MED.  

VFSREP(O)-MED is first considered due to its simpler structure and its relation to the 2006 
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Recommended Childhood Immunization Schedule (all diseases have mutually exclusive 

doses).  Both Rounding and MAX Rounding are shown to be approximation algorithms, 

which, by definition, execute in polynomial time and provide an approximation bound on the 

value of the heuristic solution (Hochbaum 1997).   

 The Rounding and MAX Rounding heuristics use the solution from a linear program (LP) 

to construct a feasible binary solution.  This technique has been applied to several other well-

known discrete optimization problems such as the Set-Covering problem (Hochbaum 1997).  

Relaxing the binary and integer constraints for the decision variables in VFSREP(O)-MED 

yields the LP relaxation 

Minimize ( )( )∑ ∑∈ =
+

NE

d

Dd
R
dd

n

j
P
djd ZZ γρ

1         

  Subject to 

     ∑ ∑∈ ∈Tt Vv vdtvdjt IXP > 1      for all d œ DE, j = 1,2,…,nd, 

∑ ∑∈ ∈Tt Vv vdtvdjt IXP  –   = 1    for all d œ DP
djZ NE, j = 1,2,…,nd, 

     ∑ ∑ –  = 0     for all d œ D
∈ ∈Tt Vv vdtvdt IXR R

dZ NE,    

     0 < Xtv < 1        for all t œ T, v œ V,   

      P
djZ > 0         for all d œ DNE, j = 1,2,…,nd, 

     R
dZ > 0        for all d œ DNE.    

Denote the optimal objective function values of VFSREP(O)-MED and its LP relaxation as 

zIP  and zLP, respectively, where zLP < zIP (since the feasible region of VFSREP(O)-MED is 

contained in the feasible region of its LP relaxation).  Let  denote the optimal decision 

vector for the LP relaxation and , t œ T, v œ V, , d œ D

*
LPX

tvLPX * *P
djZ NE, j=1,2,…,nd, and , d œ 

D

*R
dZ

NE, denote the optimal values for the decision variables in the LP relaxation.  Let ad ª 

 for all diseases d œ D, the maximum number of non-zero columns 

in any row of the constraint matrix for VFSREP(O)-MED corresponding to disease d œ D, 

and a ª a

)max)((
,...,2,1 djtTtnjvdVv PI

d
∈

=
∈ ΣΣ

Dd∈
max d.  The Rounding heuristic rounds each fractional decision variable , t œ 

T, v œ V, which is greater than the threshold value 1/a, and then computes the weighted 

amount of extraimmunization using these rounded variables.  The Rounding heuristic is now 

formally given. 

tvLPX *
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Rounding Heuristic for VFSREP(O)-MED  
Step 1. Solve the LP relaxation of VFSREP(O)-MED  
Step 2. Xtv ≠ 0 for all t œ T and v œ V 
Step 3. For all t œ T and v œ V 

a. If *
tvLPX > 1/a, then Xtv ≠1 

Step 4. For all d œ DNE 
a. For all j = 1,2,…,nd 

i.  ≠ ΣP
djZ t∈TΣv∈V Pdjt Xtv Ivd – 1 

b. ≠ ΣR
dZ t∈TΣv∈V Rdt Xtv Ivd 

Step 5. Compute and return ( )( )∑ ∑∈ =
+

NE

d

Dd
R
dd

n

j
P
djd ZZ γρ

1
. 

 

Example 10 

Consider the childhood immunization schedule displayed in Figure 3 together with the 

vaccine set V = {1 = {1}, 2 = {2}, 3 = {2,3}}, disease set DNE = {1,2}, and weights rd = gd = 

1 for diseases d  = 1,2.  

 In this example, zLP = 1, since a dose of vaccine v = 3 must be administered in time 

period t = 2 or 3 to satisfy the dose requirement for disease d = 3, and hence, = 1.  

Therefore, a feasible decision vector for  = (    

) that yields this optimal value is  = (1,

RZ 2

*
LPX ,,,,,,, *******

31232221131211 LPLPLPLPLPLPLP XXXXXXX

*****
4342413332

,,,, LPLPLPLPLP XXXXX *
LPX 6

5 , 6
1 ,0,0, 5

4 , 4
3 , 

0, 5
1 , 4

1 , 3
2 , 3

1 ).  Furthermore, a = 4, and hence, the Rounding heuristic rounds all binary 

variables > ¼ yielding the binary assignment (1,1,0,0,0,1,1,0,0,1,1,1), which returns an 

objective function value of 3, since  = 1,  = 1, and = 1.  Ñ PZ12
PZ 22

RZ 2

Lemma 9 establishes the feasibility of the solution returned by the Rounding heuristic.  

LEMMA 9:  The Rounding heuristic for VFSREP(O)-MED returns a feasible binary 

solution X, (i.e., a decision vector that satisfies the childhood immunization 

schedule). 

PROOF: By way of contradiction, suppose the Rounding heuristic does not produce a 

feasible solution that satisfies the childhood immunization schedule.  Then there exists some 

disease d œ D whose jth dose is not administered during some time period t œ T such that Pdjt 

= 1 or, for some disease d œ DNE, Σt∈TΣv∈V Pdjt Xtv Ivd –  ∫ 1 for some dose j = 1,2,…,nP
djZ d or 

Σt∈TΣv∈V Rdt Xtv Ivd  –  ∫ 0.  However, Step 4 of the algorithm ensures for all diseases d œ R
dZ
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DNE that Σt∈TΣv∈V Pdjt Xtv Ivd –  = 1 for dose j = 1,2,…,nP
djZ d and  Σt∈TΣv∈V Rdt Xtv Ivd  –  = 0.   

Therefore, for Rounding heuristic to yield an infeasible solution there must exists some 

disease d œ D whose j

R
dZ

th dose is not administered during some time period t œ T such that Pdjt 

= 1.  This implies that < 1/a for all decision variables in the constraint corresponding to 

disease d œ D, dose j.  However, by definition of a, there are at most a decision variables in 

this constraint.  Therefore, for disease d œ D, dose j  

*
tvLPX

∑ ∑∈ ∈Tt Vv vdtvdjt IXP * < a(1/a) < 1, 

which violates the LP relaxation constraint for disease d œ D, dose j, but this contradicts the 

feasibility of .  † *
LPX

 Given that linear programming is solvable in polynomial time, it then follows that the 

Rounding heuristic executes in polynomial time.  Theorem 10 shows that the value of the 

binary solution returned by the Rounding heuristic is guaranteed to be no worse than a ÿzIP.  

THEOREM 10: The Rounding heuristic is an a-approximation algorithm for VFSREP(O)–

MED. 

PROOF: Clearly, the Rounding heuristic executes in polynomial time since LP executes in 

polynomial time.   

It remains to show that + ) ∑ ∑
∈ =NE

d

Dd

n

j

P
djd Z

1

(ρ R
dd Zγ < aÿzIP.  By step 4 of the algorithm, 

+ )  = P∑ ∑
∈ =NE

d

Dd

n

j

P
djd Z

1

(ρ R
dd Zγ ∑ ∑ ∑∑

∈ = ∈ ∈NE

d

Dd

n

j Tt Vv
d

1

((ρ djt Xtv Ivd – 1) + dγ  ∑∑
∈ ∈Tt Vv

Rdt Xtv Ivd ) 

   < ∑
∈ NEDd

∑∑
∈ ∈Tt Vv

( ∑
=

dn

j
d

1

(ρ Pdjt ( a)I*
tvLPX vd – 1) + dγ Rdt ( a)I*

tvLPX vd)      

(since  Xtv = 1 only if a *
tvLPX > 1) 

                    = a ∑
∈ NEDd

∑∑
∈ ∈Tt Vv

( ∑
=

dn

j
d

1

(ρ  Pdjt I*
tvLPX vd – 1) + dγ Rdt 

*
tvLPX Ivd ) 

                                         = a (∑
∈ NEDd

∑
=

dn

j
d

1

(ρ ∑∑
∈ ∈Tt Vv

Pdjt 
*

tvLPX Ivd – 1)+ dγ Σt∈TΣv∈V 
*

tvLPdt XR  Ivd ) 

                    =  a  + ) ∑ ∑
∈ =NE

d

Dd

n

j

P
djd Z

1

*(ρ *R
dd Zγ
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                   =  a ÿzLP 

                      <  a ÿzIP   (since zLP < zIP).  † 

Theorem 10 implies two immediate corollaries for special cases of VFSREP(O)-MED.  

Corollary 7 considers a tight childhood immunization schedule such that there are at most 

two vaccines that immunize against each disease d œ D (i.e., Σv∈V Ivd < 2 for all diseases d œ 

D), and Corollary 8 gives an upper bound on a for a tight childhood immunization schedule 

and for an arbitrary childhood immunization schedule. 

COROLLARY 7:  Given a tight childhood immunization schedule, if Σv∈V Ivd < 2 for all 

diseases d œ D, then the Rounding heuristic is a 2-approximation 

algorithm for VFSREP(O)-MED. 

PROOF: A tight childhood immunization schedule implies djtTtnj
P

d
∈

=
Σ

,...,2,1
max  = 1 for all diseases 

d œ D.  Moreover, Σv∈V Ivd < 2 for all diseases d œ D, and hence, ad = 

 )max)((
,...,2,1 djtTtnjvdVv PI

d
∈

=
∈ ΣΣ < 2 for all diseases d œ D.  Therefore, a = a

Dd∈
max d < 2.  † 

COROLLARY 8: i) Given a tight childhood immunization schedule, a < u for the Rounding 

heuristic.  ii) Given an arbitrary childhood immunization schedule, a < 

uÿt for the Rounding heuristic.  

PROOF: Given a tight childhood immunization schedule, djtTtnj
P

d
∈=

Σ
,...,2,1

max  = 1 for all diseases 

d œ D, which implies a = 
Dd∈

max )max)((
,...,2,1 djtTtnjvdVv PI

d
∈

=
∈ ΣΣ < u.  Moreover, for an arbitrary 

childhood immunization schedule, a = 
Dd∈

max )max)((
,...,2,1 djtTtnjvdVv PI

d
∈

=
∈ ΣΣ < uÿt.  † 

If  contains several fractional variables, then the Rounding heuristic tends to round 

too many variables to one, thereby yielding a significant amount of extraimmunization.   

Instead of rounding all variables greater than or equal to the 1/a threshold, it seems 

reasonable to round only a few variables with large fractional values (i.e., variables closest to 

one), since these variables are more likely to equal one in the optimal solution.  The MAX 

Rounding heuristic limits the number of rounded variables by selecting the variables with 

large fractional values. 

*
LPX

 To present the MAX Rounding heuristic, recall the notation D = {(d, j): d œ D, j = 

1,2,…,nd } to be the set of all diseases ordered by dose, where |D| = , and, for all time dd nδ
1=Σ
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periods t œ T and vaccines v œ V, Ctv = {(d, j) œ D: Ivd = 1 and Pdjt = 1}, which specifies the 

diseases and dose that vaccine v œ V immunizes against in time period t œ T.   Therefore, Ctv 

Œ D for all time periods t œ T and vaccines v œ V.  Furthermore, in the case when all diseases 

d œ D have mutually exclusive doses, at most one (d, j) œ D for all diseases d œ D is 

contained in any set Ctv, since for a given disease d œ D and time period t œ T, Pdjt = 1 for at 

most one dose j = 1,2,…,nd, and hence, each set Ctv does not contain multiple doses for any 

disease d œ D.   Lastly, define ftv = for all time periods t œ T and vaccines v œ V, which 

specifies the value of vaccine v œ V in time period t œ T.  Therefore, the MAX Rounding 

heuristic limits the number of rounded variables by greedily selecting (at each iteration) the 

most valuable available vaccine v œ V that immunizes against the most disease doses (not yet 

covered) in time period t œ T (i.e., rounds the variable that maximizes ) until 

every disease dose (d, j) œ D is covered by some vaccine v œ V in time period t œ T.  The 

MAX Rounding heuristic is now formally given.  

*
tvLPX

*
tvLPX || tvtv Cf ⋅

MAX Rounding Heuristic for VFSREP(O)-MED 
Step 1. Initialize: 

a. Solve the LP relaxation of VFSREP(O)-MED  
b. ftv ≠ for all t œ T, v œ V such that *

tvLPX *
tvLPX > 1/a 

c. Xtv ≠ 0 for all t œ T and v œ V 
d. ≠ CtvĈ tv for all t œ T and v œ V 

Step 2. While C = ∫ D do U
}1:{ =tvXtv
tvC

a. (t’,v’) ≠ |  (select the non-empty set  with the largest 

fractional value times the number of disease doses covered by vaccine v œ 
V in time period       t œ T)  

VvTt ∈∈ ,
maxarg ˆ| tvtv Cf ⋅ tvĈ

b. Xt’v’ ≠ 1  (administer vaccine v’ œ V in time period t’œ T) 
c. ≠ \  for all t œ T and v œ V (remove all the disease doses 

covered by vaccine v’œ V in time period t’ œ T from all remaining sets) 
tvĈ tvĈ ''

ˆ
vtC

Step 3. For all d œ DNE 
a. For all j = 1,2,…,nd 

i. ≠ ΣP
djZ t∈TΣv∈V Pdjt Xtv Ivd – 1 

b. ≠ ΣR
dZ t∈TΣv∈V Rdt Xtv Ivd 

Step 4. Compute and return ( )( )∑ ∑∈ =
+

NE

d

Dd
R
dd

n

j
P
djd ZZ γρ

1
. 

 
Example 11 
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 Consider Example 4 for the MAX Rounding heuristic for VFSLBP(O), which is for  

childhood immunization schedule displayed in Figure 3 together with the sets and weights 

given in Example 10.  The MAX Rounding heuristic for Steps 1 and 2 proceeds as given in  

Example 4, and returns the binary assignment (1,1,0,0,0,1,1,0,0,0,1,0).  Step 3 then calculates 

the values  = 0,  = 0,  = 0,  = 0, and = 1, and Step 4 computes and returns 

the objective function value of 1, which is the optimal amount of extraimmunization.  Ñ  

PZ11
PZ12

PZ 21
PZ 22

RZ 2

The MAX Rounding heuristic executes in O(TLP + |D|tu) time, where TLP is the time 

required to solve the LP relaxation of VFSREP(O)-MED.  Furthermore, the MAX Rounding 

heuristic returns a feasible solution, since every iteration of the while loop (i.e., Step 2) 

administers a vaccine that satisfies at least one dose requirement for some disease d œ D (i.e., 

every iteration covers at least one (d, j) œ D).  Moreover, Step 1.b. ensures that the solution 

returned by the MAX Rounding heuristic can be no worse than the solution returned by the 

Rounding heuristic, and hence, the MAX Rounding heuristic is also an a-approximation 

algorithm for VFSREP(O)-MED. 

4.3.3 Greedy Heuristic 

This section presents the Greedy heuristic for VFSREP(O)-MED.  The Greedy heuristic 

iteratively selects the vaccine that incurs the smallest penalty for extraimmunization and 

immunizes against the most disease doses.  Recall, D = {(d, j) : d œ D, j = 1,2,…,nd }, Ctv = 

{(d, j) œ D: Ivd = 1 and Pdjt = 1} for all time periods t œ T and vaccines v œ V, and define the 

extraimmunization penalty for vaccine v œ V in time period t œ T as Wtv = , where  ∑
=∈ }1:{ vdIDd

dtw

wdt  =  
otherwise,

,...,2,1 somefor  ),(, if
),( and ,,...,2,1 somefor  ),(, if

0

}1:{

dtvNE

tvXtvdtvNE

d

d

njCjdDd
CjdnjCjdDd

tv

=∉∈
=∈=∈∈

⎪
⎩

⎪
⎨

⎧ =UC
γ
ρ

since the penalty for extraimmunization is rd if dose requirement j = 1,2,…,nd  for disease d œ 

DNE is satisfied by some vaccine in an earlier iteration, gd if vaccine v œ V immunizes against 

disease d œ DNE but does not satisfy some dose requirement in time period t œ T, or zero for 

all diseases d œ DNE such that vaccine v œ V does not provide immunization, (i.e., Ivd = 0) and 

for all diseases d œ DE.  The Greedy heuristic is now formally given. 

Greedy Heuristic for VFSREP(O)-MED 
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Step 1. Initialize: 
a.  Xtv ≠ 0 for all t œ T and v œ V 
b. ≠ CtvĈ tv for all t œ T and v œ V 

Step 2. While C =  ∫ D do U
}1:{ =tvXtv
tvC

a. Compute Wtv for all t œ T and v œ V (compute extraimmunization penalty 
for vaccine v œ V in time period t œ T) 

b. (t’, v’) ≠  (select the non-empty set  with the smallest 

penalty per disease doses covered by vaccine v œ V in time period t œ T.  
Break ties by selecting vaccine v œ V that immunizes against the most 
diseases in time period t œ T.) 

VvTt ∈∈ ,
minarg |ˆ|/ tvtv CW tvĈ

c. Xt’v’ ≠ 1  (administer vaccine v’ œ V in time period t’œ T) 
d. ≠ \  for all t œ T and v œ V (remove all the disease doses 

covered by vaccine v’ œ V in time period t’œ T from all remaining sets) 
tvĈ tvĈ ''

ˆ
vtC

Step 3. For all d œ DNE 
a. For all j = 1,2,…,nd 

ii. ≠ ΣP
djZ t∈TΣv∈V Pdjt Xtv Ivd – 1 

b. ≠ ΣR
dZ t∈TΣv∈V Rdt Xtv Ivd 

Step 4. Compute and return ( )( )∑ ∑∈ =
+

NE

d

Dd
R
dd

n

j
P
djd ZZ γρ

1
. 

 
Example 12 

 Consider the childhood immunization schedule displayed in Figure 8 together with 

vaccine set V = {1 = {1,2}, 2 = {1,2,3}}, disease set DNE = {1,2}, and weights rd = gd = 1 for 

diseases d  = 1,2. 

TIME PERIOD 
DISEASE 1 2 3 4 5 6 7 8 9 

1 Dose 1 Dose 2   Dose 3 
2  Dose 1 Dose 2  Dose 3  
3 Dose 1   Dose 2   Dose 3 

Figure 8: Childhood Immunization Schedule for Example 12

Here,  

D = {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)}, and  

C11 = {(1,1)}, C12 = {(1,1), (3,1)}, C21 = {(1,1), (2,1)}, C22 = {(1,1), (2,1), (3,1)},  

C31 = {(1,1), (2,1)}, C32 = {(1,1), (2,1)}, C41 = {(1,2), (2,1)}, C42 = {(1,2), (2,1)}, 

C51 = {(1,2), (2,2)}, C52 = {(1,2), (2,2), (3,2)}, C61 = «, C62 = {(3,2)}, C71 = {(2,3)}, 

C72 = {(2,3)}, C81 = {(1,3),(2,3)}, C82 = {(1,3),(2,3)}, C91 = {(1,3)}, C92 = {(1,3), (3,3)}. 

The Greedy heuristic proceeds as follows: 
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Step 1:     Initialize:   

a. Xtv = 0 for t = 1,2,…,9 and v = 1,2 

b. tvĈ  = Ctv for t = 1,2,…,9 and v = 1,2 

Step 2(1): C = « since Xtv = 0 for all t œ T, v œ V, and hence for non-empty sets  tvĈ

a. W11 = w11 + w21 = 0 + g2 = 1, W12 = w11 + w21 + w31 = 0 + g2 + 0 = 1,      

W21 = w12 + w22 = 0 + 0 = 0, W22 = w12 + w22 + w32 = 0 + 0 + 0 = 0,        

W31 = w13 + w23 = 0 + 0 = 0, W32 = w13 + w23 + w33 = 0 + 0 + 0 = 0,        

W41 = w14 + w24 = 0 + 0 = 0, W42 = w14 + w24 + w34 = 0 + 0 + 0 = 0,         

W51 = w15 + w25 = 0 + 0 = 0, W52 = w15 + w25 + w35 = 0 + 0 + 0 = 0,         

W62 = w16 + w26 + w36 = g1 + g2 + 0 = 2,                                                      

W71 = w17 + w27 = g1 + 0 = 1, W72 = w17 + w27 + w37 = g1 + 0 + 0 = 1,      

W81 = w18 + w28 = 0 + 0 = 0, W82 = w18 + w28 + w38 = 0 + 0 + 0 = 0,        

W91 = w19 + w29 = 0 + g2 = 1, W92 = w19 + w29 + w39 = 0 + g2 + 0 = 1, 

b. (t’,v’)  =  = (2,2) or (5,2), since  and  have the 

minimum weight and cover the most disease doses.  Therefore, let 

VvTt ∈∈ ,
minarg |ˆ|/ tvtv CW 22Ĉ 52Ĉ

c. X22 = 1, which implies = « for t = 1,2,3 and v = 1,2 with remaining 

non-empty sets: 

tvĈ

d. 41Ĉ  = {(1,2)},  = {(1,2)},  = {(1,2), (2,2)},  = {(1,2), (2,2), 

(3,2)},  = {(3,2)},  = {(2,3)},  = {(2,3)},  = {(1,3), (2,3)}, 

 = {(1,3), (2,3)},  = {(1,3)},  = {(1,3), (3,3)}. 

42Ĉ 51Ĉ 52Ĉ

62Ĉ 71Ĉ 72Ĉ 81Ĉ

82Ĉ 91Ĉ 92Ĉ

Step 2(2): C = {(1,1), (2,1), (3,1)} ∫ D 

a. W41 = r2 = 1, W42 = r2 = 1,  W51 = 0, W52 = 0, W62 = g1 + g2 = 2,                                           

W71 = g1 = 1, W72 = g1 = 1,  W81 = 0, W82 = 0, W91 = g2 = 1, W92 = g2 = 1 

b. (t’,v’)  =  =  (5,2) 
VvTt ∈∈ ,

minarg |ˆ|/ tvtv CW

c. X52 = 1 

d.  = {(2,3)},  = {(2,3)},  = {(1,3), (2,3)},  = {(1,3), (2,3)}, 

 = {(1,3)},  = {(1,3), (3,3)} 

71Ĉ 72Ĉ 81Ĉ 82Ĉ

91Ĉ 92Ĉ

Step 2(3): C = {(1,1), (1,2), (2,1), (2,2), (3,1), (3,2)} ∫ D 

a. W71 = g1 = 1, W72 = g1 = 1,  W81 = 0, W82 = 0, W91 = g2 = 1, W92 = g2 = 1 
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b. (t’,v’)  =  =  (8,1) 
VvTt ∈∈ ,

minarg |ˆ|/ tvtv CW

c. X81 = 1 

d.  = {(3,3)} 92Ĉ

Step 2(4): C = {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2)}∫ D 

a. W92 = r1 + g2 = 2 
b. (t’,v’)  =  =  (9,2) 

VvTt ∈∈ ,
minarg |ˆ|/ tvtv CW

c. X92 = 1 

d. tvĈ  = « for t = 1,2,…,9 and v = 1,2 

STOP while loop, since C = {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)} = D. 

Step 3:   = 0,  = 0,  = 1,  = 0,  = 0,  = 0, = 0, and  = 1 PZ11
PZ12

PZ13
PZ 21

PZ 22
PZ 23

RZ1
RZ 2

Step 4:  Return ( )( )∑ ∑∈ =
+

NE

d

Dd
R
dd

n

j
P
djd ZZ γρ

1
 = 2.  Ñ  

 The Greedy heuristic executes in O(|D|tu) time, and returns a feasible solution, since 

every iteration of the while loop (i.e., Step 2) administers a vaccine that satisfies at least one 

dose requirement for some disease d œ D (i.e., every iteration covers at least one (d, j) œ D).  

Therefore, the Greedy heuristic should (in practice) be more efficient than the MAX 

Rounding heuristic; however, the Greedy heuristic is not an approximation algorithm.  To see 

this, consider the following instance of VFSREP(O)-MED: T = {1}, D = DNE = {1,2,…,2m}, 

and V = {1 = {1,m+1}, 2 = {2,m+2}, …, m = {m,2m}, m+1 = {1,2,…,m}}.  Therefore, 

vaccines 1 through m are bivalent vaccines such that Ivd = 1 for vaccine v œ V and diseases d 

= v and d = m +v, 0 otherwise, and vaccine v = m+1 is a multivalent vaccine such that I(m+1)d 

= 1 for diseases d = 1,2,…,m, 0 otherwise.  Since t = 1, then nd = 1 for all diseases d œ D, 

and hence, Pdjt = 1 for all diseases d œ D, j = 1, t = 1.  Furthermore, suppose rd = gd = 1 for 

all diseases d œ DNE.  Observe that the optimal solution is to administer the m bivalent 

vaccines, which would result in no extraimmunization.  However, in Step 2.a of the Greedy 

heuristic, Wtv = 0 for time period t = 1 and for all vaccines v œ V, and in Step 2.b, (t’, v’) = 

(1,m+1), since vaccine v = m+1 immunizes against the largest number of diseases in time 

period t = 1.  Therefore, X1(m+1) = 1 in Step 2.c of the Greedy heuristic.  After this iteration of 

the while loop in Step 2, C = {(1,1), (2,1), …., (m,1)}, and hence, diseases d = m+1, m+2, 

…,2m must still be satisfied by some vaccine.  This implies that the m bivalent vaccines must 

also be selected by the Greedy heuristic in subsequent iterations.  Therefore, the objective 
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function value returned by the Greedy heuristic in Step 4 is ( )( )∑ ∑∈ =
+

NE

d

Dd
R
dd

n

j
P
djd ZZ γρ

1
 = 

m, and hence, ( )( )∑ ∑∈ =
+

NE

d

Dd
R
dd

n

j
P
djd ZZ γρ

1
 Ø ¶ as m Ø ¶.  Although the Greedy heuristic 

can be arbitrarily bad, the computational results in Section 5 show that the Greedy heuristic 

performed as well as the MAX Rounding heuristic for several randomly generated 

VFSREP(O)-MED instances. 

4.3.4 Randomized Rounding Heuristic 

This section presents the Randomized Rounding heuristics for VFSREP(O)-MED(A).  The 

Randomized Rounding heuristic is shown to be a randomized approximation algorithm, 

which by definition, executes in polynomial time and provides an approximation bound on 

the expected value of the heuristic solution (Hochbaum 1997).   

The Randomized Rounding heuristic uses the solution from an LP relaxation to construct a 

feasible binary solution for VFSREP(O)-MED(A).  Relaxing the binary constraints for the 

decision variables in VFSREP(O)-MED(A) yields the LP relaxation 

Maximize ∑ ∑∈ =Dd

n

j dj
d

1
π             

  Subject to 

     ∑ ∑∈ ∈Tt Vv vdtvdjt IXP > pdj      for all d œ DE, j = 1,2,…,nd, 

∑ ∑∈ ∈Tt Vv vdtvdjt IXP = pdj      for all d œ DNE, j = 1,2,…,nd, 

     ∑ ∑  = 0      for all d œ D
∈ ∈Tt Vv vdtvdt IXR NE,   

     0 < Xtv < 1        for all t œ T, v œ V,   

     0 < pdj < 1        for all d œ D, j = 1,2,…,nd.  

Denote the optimal objective function values of VFSREP(O)-MED(A) and its LP relaxation 

as zIP(A)  and zLP(A), respectively, where zLP(A) > zIP(A) (since the feasible region of VFSREP(O)-

MED(A) is contained in the feasible region of its LP relaxation).  Let  denote the 

optimal decision vector for the LP relaxation and , t œ T, v œ V, and , d œ D, j 

=1,2,…,n

*
)( ALPX

tvALPX *
)(

*
djπ

d, denote the optimal values for the decision variables in the LP relaxation.  After 

solving the LP relaxation of VFSREP(O)-MED(A), the Randomized Rounding heuristic 

assigns binary decision variable Xtv = 1(0) with probability (1 – ) for each 
tvALPX *

)( tvALPX *
)(
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time period t œ T and vaccine v œ V.  This binary variable assignment is then used to 

determine the number of satisfied doses.  The Randomized Rounding heuristic is now 

formally given. 

Randomized Rounding Heuristic for VFSREP(O)-MED(A)  
Step 1. Solve the LP relaxation of VFSREP(O)-MED(A)  
Step 2. Xtv ≠ 0 for all t œ T and v œ V 
Step 3. pdj ≠ 0 for all d œ D, j = 1,2,…,nd and ld  
Step 4. For i = 1,2,…,K (K = 500 for the computational results in Section 4.4) 

a. For all t œ T and v œ V 
i. Draw a random number RAND, where RAND ~ U(0,1) 

ii. If *
)( tvALPX > RAND, then Xtv ≠1 

b. For all d œ DNE 
i. For all j = 1,2,…,nd 

1. ≠ Σdjπ̂ t∈TΣv∈V Pdjt Xtv Ivd 

2. If d œ DNE and > 1, then set Xdjπ̂ tv ≠ 0 such that Xtv = 1 and Pdt = 

Ivd = 1 for the – 1 variables with the smallest fractional 

values  
djπ̂

tvALPX *
)(

c. For all d œ D 
i. Compute  ≠ Σdjπ̂ t∈TΣv∈V Pdjt Xtv Ivd 

1. If d œ DNE  and = 1, then ≠ 1 djπ̂ djπ

2. If d œ DE  and djπ̂ > 1, then ≠ 1 djπ

d. Compute SatisfiedDoses(i) = ∑ ∑∈ =Dd

n

j dj
d

1
π for replication i  

Step 5. Return SatisfiedDoses(i) 
i

max

 

Example 13 

Consider the childhood immunization schedule displayed in Figure 3 together with the 

vaccine set V = {1 = {1}, 2 = {2}, 3 = {2,3}}, disease set DNE = {1,2}, weights rd = gd = 1 for 

diseases d  = 1,2, and suppose K = 2 (for Step 4 of the Randomized Rounding heuristic).  The 

specific instance for VFSREP(O)-MED(A) for this example is: 

Maximize 3122211211 πππππ ++++           

  Subject to 

     112111 π=+ XX       for d = 1, j = 1 

     124131 π=+ XX       for d = 1, j = 2 

211312 π=+ XX       for d = 2, j = 1 
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224342 π=+ XX       for d = 2, j = 2 

313323 π≥+ XX       for d = 3, j = 1 

033322322 =+++ XXXX     for d = 2 

     0 < Xtv < 1        for all t œ T, v œ V,   

    0 < pdj < 1        for all d œ D, j = 1,2,…,nd.  

 In this example, zLP(A) = 4, since a dose of vaccine v = 3 can not be administered in time 

period t = 2 or 3 to satisfy the requirement for disease d = 3 dose j = 1.  Therefore, a feasible 

decision vector for  = (  

) that yields this optimal value is  = (1,

*
LPX ,,,,,,,,,,, ***********

4241333231232221131211 LPLPLPLPLPLPLPLPLPLPLP XXXXXXXXXXX

*
43LPX *

LPX 6
5 , 6

1 ,0,0,0, 4
3 ,0,0, 4

1 , 3
2 , 3

1 ).  Let R represent 

the random numbers drawn in Step 4.a.i, where the kth component of R is the random number 

that corresponds to the kth component of the vector .   *
LPX

In Step 4, for i = 1, suppose R = (0.06, 0.35, 0.81, 0.01, 0.2, 0.79, 0.6, 0.27, 0.92, 0.44, 

0.75, 0.89), then these random numbers yield the binary assignment (1,1,0,0,0,0,1,0,0,0,0,0) 

in Step 4.a.ii, which returns an objective function value of 3, since p11 = p12 = p21 = 1.  

Therefore, in Step 4.d, SatisfiedDoses(1) = 3. 

In Step 4, for i = 2, suppose R  = (0.82, 0.44, 0.11, 0.62, 0.92, 0.74, 0.41, 0.94, 0.39, 

0.08, 0.57, 0.68), then these random numbers yield the binary assignment (1,1,1,0,0,0,1,0,0,1, 

1,0) in Step 4.a.ii.  In Step 4.b.i.1, = = 2, which is infeasible since disease d = 1,2 œ 

D

12π̂ 21π̂

NE.  Therefore, for disease d = 1, dose j = 2, either X31 or X41 must be set to zero, and for 

disease d = 2, dose j = 1, either X12 or X13 must be set to zero.  In Step 4.b.i.2, X41 = 0 

since >  and X*
31LPX *

41LPX 13 = 0 since > , yielding the resulting binary assignment 

(1,1,1,0,0,0,1,0,0,0,1,0).  This binary assignment implies p

*
12LPX *

13LPX

11 = p12 = p21 = p22 = 1, which 

returns the optimal objective function value of 4.  Therefore, in Step 4.d, SatisfiedDoses(2) = 

4, and hence, Step 5 returns SatisfiedDoses(i) = max{3,4} = 4.  Ñ 
i

max

The Randomized Rounding heuristic executes in O(TLP + K(t2u d)) time, where TLP is the 

time required to solve the LP relaxation of VFSREP(O)-MED(A).  Steps 4.b and 4.c ensure 

that the solution returned by the Randomized Rounding heuristic is feasible.  Given that 

linear programming is solvable in polynomial time, it then follows that the Randomized 

Rounding heuristic executes in polynomial time.  Theorem 11 shows that the expected value 
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of the solution returned by the Randomized Rounding heuristic is guaranteed to be no worse 

than x ÿzIP(A), where x =  for p1)1( −− α
mzxp max = and a =  

 as defined above. 

}{max *

10:, * tv
tvLP

LP
XVvTt

X
<<∈∈ Dd∈

max

)max)((
,...,2,1 djtTtnjvdVv PI

d
∈

=
∈ ΣΣ

THEOREM 11: The Randomized Rounding heuristic is a randomized x-approximation 

algorithm for VFSREP(O)–MED(A). 

PROOF: A randomized approximation algorithm is an algorithm that executes in polynomial 

time and guarantees the expected value of its returned solution is within some constant factor 

x (i.e., Randomized Rounding is a randomized x-approximation algorithm if E[z] > xÿ zIP(A), 

where z is the value of the objective function returned by the Randomized Rounding heuristic 

and zIP(A) is the optimal value for VFSREP(O)-MED(A)).  Clearly, the Randomized Rounding 

heuristic executes in polynomial time (i.e., O(TLP + K(t2u d)) ) given that linear 

programming is solvable in polynomial time.  For purposes of the approximation bound, 

assume K = 1 and define the following random variable 

⎩
⎨
⎧ =∈

=
otherwise.0

satisfied is  ,,2,1 dose , disease if1
ˆ d

dj
njDd K

π  

Therefore, djπ̂ = 1 if and only if Σt∈TΣv∈V Pdjt Xtv Ivd > 1 for disease d œ DE, dose j = 1,2,…, nd 

and Σt∈TΣv∈V Pdjt Xtv Ivd = 1 for disease d œ DNE, dose j = 1,2,…,nd.  Furthermore, the 

objective function value returned by the Randomized Rounding heuristic is z = , and 

hence,    

∑∑
∈ =Dd

n

j
dj

d

1

π̂

E[z] = E[ ] = =  = . ∑∑
∈ =Dd

n

j
dj

d

1

π̂ ∑∑
∈ =Dd

n

j
dj

d

E ]ˆ[
1

π ])1ˆ[1]0ˆ[0(
1

=⋅+=⋅∑∑
∈ =

dj
Dd

n

j
dj PP

d

ππ ∑∑
∈ =

=
Dd

n

j
dj

d

P
1

]1ˆ[π

Observe that ]1ˆ[ =djP π = P[Σt∈TΣv∈V Pdjt Xtv Ivd > 1] for disease d œ DE, dose j = 1,2,…,nd and 

]1ˆ[ =djP π = P[Σt∈TΣv∈V Pdjt Xtv Ivd = 1] for disease d œ DNE, dose j = 1,2,…,nd.  Therefore, for 

disease d œ DE, dose j = 1,2,…,nd,  

]1ˆ[ =djP π = P[at least one Xtv = 1] = 1 – P[all Xtv = 0], 

and for disease d œ DNE, dose j = 1,2,…,nd,  

]1ˆ[ =djP π = P[exactly one Xtv = 1] = 1 – (P[more than one Xtv = 1]+P[all Xtv = 0]). 
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Furthermore, P[at least one Xtv = 1] > P[exactly one Xtv = 1] for all diseases d œ D and doses 

j = 1,2,…,nd, and hence, for purposes of the approximation bound, assume that DE = «.  (It 

can be shown that the Randomized Rounding heuristic is a randomized (1-1/e)-approximation 

algorithm for VFSREP(O)-MED(A) when DNE = « by using similar arguments from MAX-

SAT (Hochbaum 1997).) 

Consider some disease d œ D and dose j = 1,2,…,nd, then the LP relaxation of 

VFSREP(O)-MED(A) implies = Σ*
djπ t∈TΣv∈V Pdjt

*
tvLPX  Ivd.  Furthermore, for this constraint, 

suppose there are k fractional variables such that 0 < < 1.  (If  = 1 for some t œ T 

and v œ V, then 

*
tvLPX *

tvLPX

]1ˆ[ =djP π  = 1, and if  = 0 for all t œ T and v œ V, then *
tvLPX ]1ˆ[ =djP π  = 0).  

Then,  

]1ˆ[ =djP π = P[exactly one Xtv = 1] = (1 – ) (1 – ) ÿ ÿ ÿ (1 – ) + (1 –

) (1 – ) ÿ ÿ ÿ (1 – ) + ÿ ÿ ÿ + (1 – )(1 – ) ÿ ÿ ÿ (1 – ) , 

which implies,  

*
1tvLPX *

2tvLPX *
3tvLPX *

tvkLPX

*
1tvLPX *

2tvLPX *
3tvLPX *

tvkLPX *
1tvLPX *

2tvLPX *
)1( −ktvLPX *

tvkLPX

]1ˆ[ =djP π  > (1 – p)*
1tvLPX k-1 + (1 – p)*

2tvLPX k-1 + ÿ ÿ ÿ + (1 – p)*
tvkLPX k-1, where p =  *

,...,2,1
max

tviLPki
X

=

             = (1 – p)k-1 ( + + ÿ ÿ ÿ + ) = (1 – p)*
1tvLPX *

2tvLPX *
tvkLPX k-1 . *

djπ

Therefore,  

      E[z] = ∑∑  
∈ =

=
Dd

n

j
dj

d

P
1

]1ˆ[π

   > (1 – p
k

max max)(k-1) ∑∑
∈ =Dd

n

j
dj

d

1

*π , where pmax =  }{max *

10:, * tv
tvLP

LP
XVvTt

X
<<∈∈

        > (1 – pmax)(a-1) ÿ zLP(A), where a = a
Dd∈

max d and ad = )max)((
,...,2,1 djtTtnjvdVv PI

d
∈

=
∈ ΣΣ    

        > (1 – pmax)(a-1) ÿ zIP(A)  (since zLP(A) > zIP(A)), and hence,  

x = (1 – pmax)(a-1)  for the Randomized Rounding heuristic.  † 

In the worst case, Theorem 11 shows that the Randomized Rounding heuristic could 

return a solution that is arbitrarily close to zero; however, the computational results in 

Section 4.4 show that the Randomized Rounding heuristic performed well in practice for 

several randomly generated VFSREP(O)-MED(A) instances. 
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4.3.5 Generalized Heuristic   

This section presents the MAX Rounding and Greedy heuristics for VFSREP(O) by 

converting a VFSREP(O) instance into two distinct VFSREP(O)-MED instances, and then 

applying the MAX Rounding and Greedy heuristics for each VFSREP(O)-MED instance to 

find a feasible solution for the VFSREP(O) instance.   

 The MAX Rounding and Greedy heuristics for VFSREP(O)-MED do not ensure a 

feasible solution for an arbitrary VFSREP(O) instance, where some diseases d œ D in the 

childhood immunization schedule do not have mutually exclusive doses.  The reason these 

heuristics do not ensure feasibility for an arbitrary VFSREP(O) is because the sets Ctv, for all 

time periods t œ T and vaccines v œ V, defined in the MAX Rounding and Greedy heuristics 

for VFSREP(O)-MED no longer satisfy unique dose requirements, since, for the diseases d œ 

D that do not have mutually exclusive doses, there are time periods t œ T when more than 

one required dose may be administered.  For example, if vaccine v œ V is a monovalent 

vaccine such that Ivd = 1 for disease d œ D, and in time period t œ T, Pdjt = 1(0) for j = 

1,2,(3,4,...,nd) then Ctv = {(d,1),(d,2)}, and hence, administering vaccine v œ V in time period 

t œ T satisfies doses 1 and 2 for disease d.   Therefore, to ensure the sets Ctv satisfy unique 

dose requirements, consider two variations of the set Ctv for all time periods t œ T and 

vaccines v œ V 

1) Minimum Dose: = {(d, k) œ D: IMIN
tvC vd = 1 and k = min{j: Pdjt = 1}}  

2) Maximum Dose: = {(d, k) œ D: IMAX
tvC vd = 1 and k = max{j: Pdjt = 1}}.   

Variations 1) or 2) ensure that set Ctv (i.e., Ctv = for all time periods t œ T and vaccines v 

œ V, or C

MIN
tvC

tv =  for all time periods t œ T and vaccines v œ V) satisfies unique dose 

requirements for all diseases d œ D, and hence, each variation converts a VFSREP(O) 

instance into a distinct VFSREP(O)-MED instance.     

MAX
tvC

 Therefore, the A heuristic for VFSREP(O), where A is the MAX Rounding or Greedy 

heuristic, executes the A heuristic for VFSREP(O)-MED on each distinct VFSREP(O)-MED 

instance.  The A heuristic is now formally given.      

A Heuristic for VFSREP(O)  
Step 1. Select A œ {MAX Rounding, Greedy} 
Step 2. Initialize: 

a. Let D = {(d, j) : d œ D, j = 1,2,…,nd } and Ctv =  for all t œ T, v œ V MIN
tvC
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Step 3. Execute A heuristic for VFSREP(O)-MED and return                                                     
ZMIN = ( )( )∑ ∑∈ =

+
NE

d

Dd
R
dd

n

j
P
djd ZZ γρ

1
 

Step 4. Initialize: 
a. Let D = {(d, j) : d œ D, j = 1,2,…,nd } and Ctv =  for all t œ T, v œ V MAX

tvC
Step 5. Execute A heuristic for VFSREP(O)-MED and return                                                              

ZMAX = ( )( )∑ ∑∈ =
+

NE

d

Dd
R
dd

n

j
P
djd ZZ γρ

1
 

Step 6. Return min{ZMIN, ZMAX} 

 The A heuristic executes in O(|D|tu) time for A = Greedy and O(TLP + |D|tu) time for A 

= MAX Rounding, where TLP is the time required to solve the LP relaxations of both distinct 

VFSREP(O)-MED instances.   

 Furthermore, the A heuristic returns a feasible solution for VFSREP(O) provided that, 

for all diseases d œ D, dose j = 1,2,…,nd
 does not dominate dose k = 1,2,…,nd, j ∫ k.  Recall  

that dose j = 1,2,…,nd is said to dominate dose k = 1,2,…,nd, j ∫ k, for disease d œ D if Pdjt > 

Pdkt for all time periods t œ T.  If disease d œ D has no dominant doses, then the time periods 

when dose j = 1,2,…,nd may be administered do not completely overlap with the time periods 

when dose k = 1,2,…,nd, j ∫ k, may be administered, and hence, for all j = 1,2,…,(nd – 1), 

there exists time periods t, t’ œ T such that Pdjt = 1 and Pd(j+1)t = 0 and Pdjt’ = 0 and Pd(j+1)t’ = 

1.   

 All of the diseases in the 2006 Recommended Childhood Immunization Schedule do not 

have a dose that dominates any other dose, and future schedules should also meet this 

restriction, since there is a biological spacing requirement between each dose of vaccine for 

every disease d œ D, and hence, requiring that the childhood immunization schedule has no 

dominant doses ensures that every (d, j) œ D (in Steps 2.a and 4.a) is contained in some set 

Ctv for at least one time period t œ T and vaccine v  œ V.  Therefore, the A heuristic returns a 

feasible solution for VFSREP(O) (assuming VFSREP(O) has a feasible solution), since every 

iteration of the A heuristic for VFSREP(O)-MED (in Step 3 and Step 5) administers a 

vaccine that satisfies at least one dose requirement for some disease d œ D (i.e., every 

iteration covers at least one (d, j) œ D). 

103 



4.4 Computational Results 

This section reports computational results comparing the MAX Rounding and Greedy 

heuristics, and the DP algorithm for VFSREP(O)-MED, and the Randomized Rounding 

heuristic for VFSREP(O)-MED(A) .  Computational results are also reported for an IP 

branch and bound (IP B&B) algorithm for VFSREP(O)-MED (denoted IP-MIN) and 

VFSREP(O)-MED(A) (denoted IP-MAX).  Computational results with the Rounding 

heuristic are not reported, since this heuristic (empirically) yields significant amounts of 

extraimmunization.  The MAX Rounding, Greedy, and Randomized Rounding heuristics and 

the DP and IP B&B algorithms were executed on three sets of test problems to demonstrate 

their computational effectiveness and limitations. The first test problem is the 2006 

Recommended Childhood Immunization Schedule.  The second set of test problems are 

randomly generated based on hypothetical near-term future childhood immunization 

schedules, while the third set of test problems are larger, randomly generated childhood 

immunization schedules executed with several different vaccine sets.  The size of these 

randomly generated childhood immunization schedules assume that future Recommended 

Childhood Immunization Schedules will expand to include more diseases and time periods, 

and hence, will require a larger number of both monovalent and combination vaccines.  

These assumptions are reasonable, given recent trends in expanding the schedule.  For 

example, four time periods and three diseases have been added to the Recommended 

Childhood Immunization Schedule since 1995, and there are currently several pediatric 

vaccine products under development (CDC 1995, Cochi 2005, Infectious Diseases in 

Children 2002).   

 For the MAX Rounding and Greedy heuristics and the DP and IP-MIN exact algorithms 

for VFSREP(O)-MED, the solution quality effectiveness measure z is the value of the 

objective function.  Furthermore, for all childhood immunization schedules, rd = gd = 1 for 

all diseases d œ DNE, and hence, z specifies the number of extra vaccine doses administered.  

Moreover, for the Randomized Rounding heuristic and IP-MAX algorithm for VFSREP(O)-

MED(A), the solution quality effectiveness measure z is the value of the objective function 

divided by the total number of required doses, and hence, z = z /   Therefore, z 

represents the percentage of dose requirements satisfied by the Randomized Rounding 

.1 dd nδ
=Σ
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heuristic or IP-MAX algorithm for VFSREP(O)-MED(A).  The execution time (in CPU 

seconds) is also reported for each heuristic and exact algorithm, which is the efficiency 

effectiveness measure.  All heuristics and exact algorithms were coded and executed in 

MATLABv7.0 on a 2.4 MHz Pentium IV with 1GB of RAM including both IP B&B 

algorithms.  The IP-MIN algorithm used an open source mixed integer optimization routine 

(see Tawfik 2005) and the IP-MAX algorithm used the existing binary solver in the MATLAB 

optimization toolbox. 

 The first test problem is the 2006 Recommended Childhood Immunization Schedule 

displayed in Figure 1.  Therefore, D = {1 = Hepatitis B, 2 = Diphtheria-Tetanus-Pertussis, 3 

= Haemophilus influenzae type b, 4 = Polio, 5 = Measles-Mumps-Rubella, 6 = Varicella, 7 = 

Pneumococcus, 8 = Influenza, 9 = Hepatitis A} with dose vector  n = (3, 5, 4, 4, 2, 1, 4, 1, 2), 

since diphtheria, tetanus, and pertussis are considered one disease and measles, mumps, and 

rubella are also considered one disease, and T = {1,2,…,10}.  The schedule parameters Pdjt, 

Qdt, and Rdt, for diseases d œ D, dose j = 1,2,…,nd, and time periods t œ T are all obtained 

from Figure 1.  For example, for disease d = 1 = Hepatitis B and dose j = 2, Pdjt = 1(0) for 

time periods t = 2,3(1,4,5,6,7,8,9,10).  Two different sets of vaccines, V1 and V2, are 

evaluated on two different sets of diseases that restrict extraimmunization, DNE1 and DNE2.  

The vaccine sets are V1 = {1 = {1}, 2 = {2}, 3 = {3}, 4 = {4}, 5 = {5}, 6 = {6}, 7 = {7}, 8 = 

{8}, 9 = {9}, 10 = {2,3}, 11 = {1,3}, 12 = {1,2,4}, 13 = {5,6}} and V2 = {1 = {1}, 2 = 

{2,3,4}, 3 = {1,9}, 4 = {4}, 5 = {5}, 6 = {6}, 7 = {7}, 8 = {8}, 9 = {9} 11 = {1,3}, 12 = 

{1,2,4}, 13 = {5,6}, 14 = {1,2,3,4}}, where V1 represents a set of pediatric vaccines currently 

licensed for use in the United States and V2 represents a set of pediatric vaccine with fewer 

monovalent vaccines and more combination vaccines, some of which are not yet licensed for 

use in the United States, but are projected to be in the future.  The parameters Ivd are 

indicated within the sets V1 and V2, respectively.  For example, vaccine 1 œ V1 is the 

monovalent vaccine for disease 1 (Hepatits B), vaccine 12 œ V1 is the combination vaccine 

Pediarix® that immunizes against diseases 1 (Hepatitis B), 2 (Diphtheria-Tetanus-Pertussis), 

and 4 (Polio), and vaccine 2 œ V2 is the combination vaccine Pentacel® that immunizes 

against diseases 2 (Diphtheria-Tetanus-Pertussis), 3 (Haemophilus influenzae type b), and 4 

(Polio), which was recently submitted for licensing in the United States.  The disease sets are 

DNE1 = {1,2,3,4} and DNE2 = D = {1,2,3,4,5,6,7,8,9}.  Table 6 reports the solution quality and 
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execution time (in CPU seconds) for each heuristic and exact algorithm and for each vaccine 

set and disease set combination.   

Table 6: Computational Results for 2006 Recommend Childhood Immunization Schedule 

V1 and DNE1 V1 and DNE2 V2 and DNE1 V2 and DNE2 
VFSREP(O)-MED z Time z Time z Time z Time 

MAX Rounding 0 0.14 1 0.27 3 0.17 4 0.25 
Greedy 0 0.09 0 0.11 1 0.09 1 0.11 

DP 0.36 0.36 0.47 0.45 
IP-MIN 

0 
9.66 

0 
5.02 

1 
16.94 

1 
12.89 

VFSREP(O)-MED(A) z Time z Time z Time z Time 
Randomized Rounding 1.00 0.56 1.00 0.75 0.96 0.56 0.96 0.81 

IP-MAX 1.00 0.20 1.00 0.27 0.96 0.22 0.96 0.22 

 
 Lemma 6 and Theorem 9 in Section 4.2 showed that VFSREP(O) is solvable in 

polynomial time when all vaccines v œ V are monovalent vaccines or when there exists a 

corresponding monovalent vaccine for every disease d œ D, and hence, the results for the 

solution quality and execution time reported in Table 6 are not surprising, given that most 

diseases have a corresponding monovalent vaccine (particularly in vaccine set V1).  

Furthermore, the MAX Rounding and Greedy heuristics for VFSREP(O)-MED were both 

more efficient than the exact algorithms, and in all cases, the Greedy heuristic returned the 

optimal solution. Moreover, the Randomized Rounding heuristic for VFSREP(O)-MED(A) 

also returned the optimal solution for each case, but took more time to execute than the IP-

MAX algorithm since the random rounding was replicated K = 500 times.  Excluding the IP-

MIN algorithm, all heuristics and exact algorithms executed in less than a second.  However, 

as the next set of test problems will illustrate, this is unlikely to occur for future 

Recommended Childhood Immunization Schedules, as the schedule expands and more 

combination vaccines are licensed for use and enter the market.   

 The second set of test problems considers hypothetical near-term future childhood 

immunization schedules.  Each heuristic and exact algorithm were executed on 30 randomly 

generated childhood immunization schedules with 15 time periods, 30 vaccines, and 11 

diseases.  Therefore, each random childhood immunization schedule reflects a gradual 

expansion in the sets D (from 9 to 11 diseases) and T (from 10 to 15 time periods) and a 

significant increase in the number of available vaccines, particularly, combination vaccines.  

In each random childhood immunization schedule, 1 < nd < 5 for all diseases d œ D, 1 < 
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Val(v) < 6 for all vaccines v œ V, and Pdjt = 1 for at most three time periods t œ T for every 

disease d œ D and dose j = 1,2,…,nd.  For each randomly generated childhood immunization 

schedule, each heuristic and exact algorithm was executed three times, where in execution 1, 

2, and 3, dNE = 4, 8, and 11, respectively.  Table 7 reports the solution quality and execution 

time (in CPU seconds) averaged over the 30 random childhood immunization schedules for 

each value of dNE.  An additional measure l that indicates the number of childhood 

immunization schedules that the respective heuristic or exact algorithm found the optimal 

solution is also reported.   The IP B&B algorithms found the optimal solution for l of the 30 

random childhood immunization schedules, but exceeded the default execution time limit 

(two hours) or default iteration limit (107) for the remaining (30 – l) random childhood 

immunization schedules.  The statistics reported in Table 7 are averaged over the l random 

childhood immunization schedules for which the IP B&B algorithms found the optimal 

solution, which is why the average z values for the IP-MIN and DP algorithms differ when 

dNE = 8 and 11.  Furthermore, the Randomized Rounding heuristic found a feasible solution 

for all VFSREP(O)-MED(A) instances, however, for comparative purposes, the statistics 

reported in Table 7 are for the instances for which the IP-MAX algorithm also found the 

optimal solution. 

 

 

Table 7: Computational Results for Future Childhood Immunization Schedule 

dNE = 4 dNE = 8 dNE = 11  
VFSREP(O)-MED z Time l z Time l z Time l 

MAX Rounding 0.70 0.80 25 7.53 0.83 4 16.77 0.85 0 
Greedy 1.03 0.23 18 7.87 0.29 2 13.97 0.35 0 

DP 0.43 1.74 30 4.77 1.80 30 10.33 1.81 30 
IP-MIN 0.43 518 30 4.48 1095 27 10.07 1767 27 

VFSREP(O)-MED(A) z Time l z Time l z Time l 
Randomized Rounding 0.98 0.67 25 0.72 0.85 8 0.57 0.92 10 

IP-MAX 0.98 1.06 30 0.77 3.91 29 0.59 7.48 25 
  

 The data reported in Table 7 show that for VFSREP(O)-MED the MAX Rounding and 

Greedy heuristics found better solutions for dNE << d.  For the smaller values of dNE, the MAX 

Rounding heuristic slightly outperformed the Greedy heuristic, while the Greedy heuristic 

outperformed the MAX Rounding heuristic for dNE = d.  Across all values of dNE, the Greedy 
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heuristic was the most efficient compared with MAX Rounding and the DP and IP-MIN exact 

algorithms.  The DP algorithm executed 2 to 7 times slower than the heuristics; however, the 

IP-MIN algorithm, on average, executed approximately 300 to 1000 times slower than the 

DP algorithm.  Furthermore, the DP algorithm found the optimal solution for all 90 instances 

of VFSREP(O)-MED reported in Table 7, with little sensitivity to the value of  dNE.  

Conversely, the IP-MIN algorithm only found the optimal solution for 84 of the 90 instances 

of VFSREP(O)-MED reported in Table 7, and the average execution time for IP-MIN 

algorithm more than tripled when dNE went from 4 diseases to 11 diseases.  The data reported 

in Table 7 show that for VFSREP(O)-MED(A) the Randomized Rounding heuristic also 

found better solutions when  dNE << d, and, on average, was always more efficient than the 

exact IP-MAX algorithm.  Furthermore, the IP-MAX algorithm shared similar trends with 

the IP-MIN algorithm in that its execution time and ability to find an optimal solution in a 

‘reasonable’ amount of time and memory was sensitive to the value of dNE.     

 The observed difference in execution time between the heuristics and exact algorithms 

reported in Table 7 could become problematic for larger childhood immunization schedules 

and/or for practical uses, since the execution time of the DP algorithm rapidly grows as the 

size of the disease set D grows.  For example, a webpage used to find a vaccine formulary for 

a given childhood immunization schedule that limits the amount of extraimmunization would 

require an algorithm to execute in real-time, since most web users would terminate a web 

application that required several seconds or minutes to execute.  Moreover, the difference in 

execution time between the heuristics and exact algorithms will provide a more efficient 

analysis of larger childhood immunization schedules that may involve Monte Carlo 

simulation (see Jacobson and Sewell 2002) or the balking problem (described in Section 

3.3.1), where either of these may require the solution of hundreds of thousands of 

VFSREP(O) instances.  Furthermore, the childhood immunization schedule may need to be 

solved for each child, on a case-by-case basis, depending on the desired diseases in the set 

DNE, and hence, efficient algorithms are needed so as to provide, in real-time, practical value 

for the public health community. 

The third set of test problems considers larger randomly generated childhood 

immunization schedules that demonstrate the effect of combination vaccines and further 

demonstrate how a childhood immunization schedule’s size affects the efficiency and 

108 



solution quality of each heuristic and exact algorithm.  Each heuristic and exact algorithm 

were executed on 30 randomly generated childhood immunization schedules with 20 time 

periods, 50 vaccines, and 13 diseases, where dNE = 10, 1 < nd < 5 for all diseases d œ D, and 

Pdjt = 1 for at most four time periods t œ T for every disease d œ D and dose j = 1,2,…,nd.  

For each randomly generated childhood immunization schedule, each heuristic and exact 

algorithm was executed six times, where for execution i = 1,2,…,6, Val(v) < i for all vaccines 

v œ V.  Table 8 reports the solution quality and execution time (in CPU seconds) averaged 

across all 30 randomly generated childhood immunization schedules as well as the measure l 

for each heuristic, algorithm, and valency.  The overall average and standard deviation across 

all vaccine sets is also reported for each heuristic and exact algorithm.  Note that 

computational results for the IP-MIN algorithm are not reported since the algorithm 

consistently exceeded virtual memory limits of 3.7 GB.  Furthermore, the IP-MAX algorithm 

found the optimal solution for 151 of the 180 VFSREP(O)-MED(A) instances (each random 

childhood immunization schedule was executed six times), but exceeded the maximum 

number of iterations allowed for the remaining 29 instances (3 instances for Val(v) < 4, 11 

instances for Val(v) < 5, and 15 instances for Val(v) < 6).  The statistics reported in Table 8 

are for the 151 instances for which the IP-MAX algorithm found the optimal solution while 

the execution time in parenthesis is the average over all instances.  Moreover, the 

Randomized Rounding heuristic found a feasible solution for all 180 VFSREP(O)-MED(A) 

instances, however, for comparative purposes, the statistics reported in Table 8 are for the 

151 instances for which the IP-MAX algorithm also found the optimal solution.   

Table 8: Computational Results for the Effect of Combination Vaccines 

VFSREP(O)-MED  
MAX Round Greedy DP 

Val(v) < z Time l z Time l z Time l 
1 0 1.1 30 0 1.3 30 0 6.4 30 
2 0.8 0.9 14 1.1 0.9 18 0.4 9.1 30 
3 2.3 1.0 8 3.4 0.8 6 1.6 11.2 30 
4 5.0 1.2 3 4.6 0.8 1 2.1 12.8 30 
5 6.7 1.3 1 6.2 0.7 2 3.1 14.4 30 
6 8.5 1.5 0 7.9 0.7 1 4.6 15.7 30 

Average 3.9 1.2 9.3 3.9 0.9 9.7 2.0 11.6 30 
St Dev 3.4 0.2 11.4 3.0 0.2 11.9 1.7 3.5 0 

VFSREP(O)-MED(A)  
Randomized Rounding IP-MAX 
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Val(v) < z Time l z Time l 
1 1.00 1.1 30 1.00 1.1 30 
2 0.99 1.2 28 0.99 1.3 30 
3 0.92 1.2 16 0.94 2.7 30 
4 0.88 1.3 7 0.92 8.6 (1184) 27 
5 0.80 1.3 2 0.87 27.5 (4210) 19 
6 0.68 1.3 1 0.77 8.9 (5957) 15 

Average 0.88 1.2 14 0.91 8.4 (1893) 25 
St Dev 0.11 0.1 12.8 0.09 10.0 (2574) 6.6 

  

The data reported in Table 8 demonstrate how the size of the childhood immuninzation 

schedule and the complexity of the vaccine set impact the execution time and solution quality 

of the heuristics and exact algorithms.  For example, in most cases, the execution time 

required to execute the heuristics and exact algorithms steadily increased as the valency (i.e., 

complexity) of the vaccine set increased.  Furthermore, the IP-MIN algorithm only found the 

optimal solution for half of the random childhood immunization schedules when hexavalent 

vaccines were present.   Moreover, the difference in execution times between the heuristics 

and exact algorithms significantly widened when compared to the results in Table 7.  For 

example, the average execution time for the DP algorithm reported in Table 8 is more than 6 

times the average execution time reported in Table 7, whereas the average execution times 

for the heuristics reported in Table 8 are less than 3 times the average execution times 

reported in Table 7.   Observe also that the average solution quality for the MAX Round and 

Greedy heuristics were comparable across all vaccine sets, where the MAX Round heuristic 

performed better for lower valency vaccines and the Greedy heuristic performed better for 

higher valency vaccines.  Furthermore, the execution time of the Greedy heuristic decreased 

as the valency of the vaccine set increased (almost requiring half the time when Val(v) < 6 

compared when Val(v) = 1), which is intuitive, since this heuristic should require less 

iterations when more vaccines are able to protect against multiple diseases.  As expected, the 

solution quality of all the heuristics deteriorated as the valency of the vaccine set increased.  

However, in the case of monovalent vaccines, each heuristic found the optimal solution on 

every random childhood immunization schedule, which is consistent in light of Theorem 9.    

 The computational results suggest that on average, the DP algorithm requires 

significantly less computational effort to find the optimal solution than is required by an IP 

B&B algorithm, such as IP-MIN, and with less variability.  As shown in Section 4.3.1, the 
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computational complexity of the DP algorithm is highly sensitive to the number of diseases, 

since the cardinality of the decision space is bounded above by 2d and SMax also depends on 

the number of diseases.  On the other hand, the computational complexity of the IP-MIN 

algorithm is highly sensitive to the number of decision variables, since the number of 

decision variables bound the number of possible branches.  Furthermore, the computational 

effort of any IP B&B algorithm is sensitive to the gap between the value of the optimal 

integer solution and the corresponding value of the optimal LP relaxation solution, since a 

large gap would tend to require more branching to find the optimal integer solution 

(Nemhauser and Wolsey 1999).  The data reported in Tables 6-8 provide empirical support 

for these remarks.  For example, the DP algorithm was significantly more efficient than the 

IP-MIN algorithm reported in Table 7, and, on average, found the optimal solution for the 

larger childhood immunization schedules in less than 12 seconds versus the IP-MIN 

algorithm, which was unable to solve the larger childhood immunization schedules reported 

in Table 8 due to the amount of memory required to store the branch tree. 
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Chapter 5: The Complete Problem: Combining 

Budget and Extraimmunization 
This chapter extends the models presented in Chapters 3 and 4 by presenting a general model 

that determines the set of vaccines that should be used in a clinical environment to satisfy any 

given childhood immunization schedule at minimum cost while also restricting 

extraimmunization.  The chapter is organized as follows.  Section 5.1 presents the general 

model (formulated as a decision problem and as a discrete optimization problem).  Section 

5.2 presents the computational complexity of the decision/discrete optimization problems and 

presents several formulation extensions.  Lastly, Section 5.3 discusses how the DP algorithm 

and the Rounding, MAX Rounding, and Greedy heuristics for VFSREP(O) presented in 

Chapter 4 may be extended for the discrete optimization problem presented here.   

5.1 Model Formulation 

This section presents a model formulation for a decision problem and a discrete optimization 

problem used to design a vaccine formulary that addresses the cost of satisfying a given 

childhood immunization schedule while also restricting extraimmunization.  Given a 

childhood immunization schedule, the decision problem, termed the Vaccine Formulary 

Selection with Limited Budget and Restricted Extraimmunization Problem (VFSLBREP), 

asks whether it is possible to design a vaccine formulary within a specified budget that also 

restricts extraimmunization for a specified set of diseases.  This problem is now formally 

stated. 

Vaccine Formulary Selection with Limited Budget and Restricted Extraimmunization 

Problem (VFSLBREP) 

Given: 

- A set of time periods, T = {1,2,…,t}, 

- a set of diseases, D = {1,2,…,d},  

- a set of diseases where extraimmunization is permitted, DE Œ D, with |DE| = dE, 

- a set of diseases where extraimmunization is not permitted, DNE  = D\DE, with |DNE| = 

dNE, 
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- a set of vaccines V = {1,2,…,u}, available to be administered to immunize against the 

d diseases, 

- the number of doses of a vaccine that must be administered for immunization against 

the d diseases,  n1,n2,…, nd, 

- the cost of each vaccine, c1,c2,…,cu, 

- a budget B, 

- a set of binary parameters that indicate which vaccines immunize against which 

diseases;  therefore, Ivd = 1 if vaccine v œ V  immunizes against disease d œ D, 0 

otherwise, 

- a set of binary parameters that indicate the set of time periods in which a particular 

dose of a vaccine may be administered to immunize against a disease; therefore, Pdjt 

= 1 if in time period t œ T, a vaccine may be administered to satisfy the jth dose, j = 

1,2,…,nd, requirement for disease d œ D, 0 otherwise,   

- a set of binary parameters that indicate the set of time periods in which a vaccine may 

be administered to satisfy any dose requirement against a disease; therefore, Qdt = 1 if 

in time period t œ T, a vaccine may be administered to satisfy any dose requirement 

against disease d œ D, 0 otherwise, (i.e., for any disease d œ D and time period t œ T, 

Qdt = 1 if and only if Pdjt = 1 for some dose j = 1,2,…,nd.), 

- a set of binary parameters that indicate the set of time periods in which no dose of a 

vaccine may be administered to immunize against a disease where extraimmunization 

is not permitted; therefore, Rdt = 1 if in time period t œ T, no dose of a vaccine may be 

administered to immunize against disease d ∈ DNE, 0 otherwise, (i.e., for any disease 

d œ DNE and time period t œ T, Rdt = 1 if and only if Qdt = 0), 

- a set of integer parameters that indicate the minimum number of doses of a vaccine 

required for disease d œ D through time period t œ T; denoted mdt.   

Question: Does there exist a set of vaccines from V that can be administered over the 

time periods in T such that these vaccines immunize against all the diseases in D, at a 

total cost no greater than B while also restricting extraimmunization (i.e., do there 

exist values for the binary decision variables Xtv, t ∈ T, v ∈ V, where Xtv = 1 if 

vaccine v œ V is administered in time period t œ T, 0 otherwise, and for the binary 

variables Udt, d ∈ D, t ∈ T, where Udt = 1 if any vaccine v œ V that immunizes against 
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disease d œ D is administered in time period t œ T , 0 otherwise, such that for all 

diseases d ∈ D, Σt∈TΣv∈V Pdjt Xtv Ivd > 1 for dose j = 1,2,…,nd, Σt=1,2,…,t’ Qdt Udt >  

for all time periods t’

tdm ′

 œ T, and Σv∈V Qdt Xtv Ivd > Udt for all time periods t œ T, and for 

all diseases d ∈ DNE, Σt∈TΣv∈V Rdt Xtv Ivd = 0 and Σt∈T Σv∈V Qdt Xtv Ivd = nd, and, finally, 

Σt∈TΣv∈V  cv Xtv < B)? 

 In the formulation of VFSLBREP, as was the case for VFSLBP and VFSREP, the given 

sets and parameters equate to a childhood immunization schedule together with budget and 

vaccine cost information.  Likewise, all of the assumptions made for VFSLBP and VFSREP 

also apply to VFSLBREP.  For example, the doses for all diseases d œ D are assumed to be 

sequentially ordered.  The question in VFSLBREP asks if there exists a vaccine formulary 

administered over the time periods in T that satisfies a given childhood immunization 

schedule and is within the given budget B and restricts extraimmunization for the diseases in 

the set DNE (i.e., a variable assignment for the binary decision variables Xtv, for all time 

periods t ∈ T and vaccines v ∈ V, and for the binary decision variables Udt, for all diseases d 

œ D and time periods t œ T, that satisfies the per dose requirements (Σt∈TΣv∈V Pdjt Xtv Ivd > 1 

for dose j = 1,2,…,nd) and total dosage requirements (Σt=1,2,…,t’ Qdt Udt >  for all time 

period t’ œ T and Σ

tdm ′

v∈V Qdt Xtv Ivd > Udt for all time periods t œ T ) for each disease d œ D, and 

does not exceed the total dosage requirements (Σt∈T Σv∈V Qdt Xtv Ivd = nd) or provide a dose in 

a time period when no dose of a vaccine may be administered (Σt∈TΣv∈V Rdt Xtv Ivd = 0) for 

each disease d œ DNE, and, finally, that satisfies the budget constraint (Σt∈TΣv∈V  cv Xtv < B)).    

 This decision problem can be addressed by solving a discrete optimization problem.  

More specifically, the following integer program can be used to answer VFSLBREP.  

Integer Programming Model for Vaccine Formulary Selection with Limited Budget 

Problem (VFSLBREP(O)) 

  Minimize ∑ ∑  + 
∈ ∈Tt Vv tvv Xc ∑ ∈

+
NEDd

R
dd

P
dd ZZ γρ       (O) 

  Subject to 

     ∑ ∑∈ ∈Tt Vv vdtvdjt IXP > 1     for all d œ D, j = 1,2,…,nd , (1) 

     ∑ = ',...,2,1 tt dtdtUQ > m     for all d œ D, t’ œ T,   (2) td ′
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     ∑ ∈Vv vdtvdt IXQ > Udt      for all d œ D, t œ T,   (3) 

     ∑ ∑ –  = n
∈ ∈Tt Vv vdtvdt IXQ P

dZ d  for all d œ DNE,    (4) 

     ∑ ∑ –  = 0    for all d œ D
∈ ∈Tt Vv vdtvdt IXR R

dZ NE,    (5) 

     Xtv œ {0,1}       for all t œ T, v œ V,   (6) 

     Udt œ {0,1}      for all d œ D, t œ T,   (7) 

     , œ ZP
dZ R

dZ + »{0}    for all d œ DNE,     (8) 

where sets T, D, DNE and V, parameters {nd}, {Ivd}, {Pdjt}, {Qdt}, {Rdt}, and {mdt}, and 

variables {Xtv} and {Udt} are defined in VFSLBREP, and  

- rd œ Q+ is the weight of extraimmunization for disease d œ DNE for all time periods t 

œ T such that Qdt = 1,    

- gd œ Q+ is the weight of extraimmunization for disease d œ DNE for all time periods t 

œ T such that Rdt = 1, 

- œ ZP
dZ + »{0} is the number of extra doses of vaccine administered for disease d œ 

DNE in all time periods t œ T such that Qdt = 1, and 

- œ ZR
dZ + »{0} is the number of extra doses of vaccine administered for disease d œ 

DNE in all time periods t œ T such that Rdt = 1, as defined for VFSREP(O). 

The objective function (O) minimizes the total cost and total weighted amount of 

extraimmunization of the vaccine formulary subject to the dose requirements for each disease 

d œ D and extraimmunization restrictions for each disease d œ DNE.  The objective function 

weights for extraimmunization (rd and gd) are subjective, and hence, allow the model user to 

weight extraimmunization differently for each disease d œ DNE and/or for time periods when 

vaccination is permitted versus when vaccination is restricted.  However, additional care 

should be taken in assigning the objective function weights for extraimmunization since the 

objective function (O) has two objectives (minimize cost and minimize extraimmunization), 

and hence, given equal emphasis on both of these objectives, the magnitude of the weights 

for extraimmunization should be scaled similar to the cost parameters cv, v œ V.  Constraint 

(1) ensures that for each disease d œ D, at least one vaccine that provides immunization for 

disease d œ D is administered in some time period when dose j = 1,2,…,nd may be 

administered.  Constraint (2) and (3) guarantees that for each disease d œ D, at least mdt doses 
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of a vaccine that immunize against disease d œ D are administered in the first t œ T time 

periods, while also ensuring that at most one dose requirement for disease d œ D is satisfied 

in time period t œ T.  Constraint (4) and (5) are for each disease d œ DNE.  Constraint (4) 

ensures that the total number of doses administered in time periods when vaccination is 

permitted equals the dose requirement nd, plus any extra doses that are administered in the 

time periods when vaccination is permitted.  Constraint (5) ensures that the number of doses 

administered in time periods when vaccination is restricted equals zero, plus any extra doses 

that are administered in the time periods when vaccination is restricted.  Constraint (6), (7), 

and (8) are the binary and integer constraints on the respective decision variables.   

 To simplify the formulation of VFSLBREP(O), recall that Tdj = {t œ T : Pdjt = 1} is the 

set of time periods when dose j = 1,2,…,nd, may be administered for disease d œ D, where, 

by assumption, the time periods in Tdj are consecutive for all diseases d œ D and doses j = 

1,2,…, nd.  Furthermore, recall that a disease d œ D is defined to have mutually exclusive 

doses if Tdi ∩ Tdj = « for all i, j = 1,2,…,nd, i ≠ j (i.e., the sets Tdj, j = 1,2,…,nd are pairwise 

mutually exclusive).  Note that constraints (2) and (3) are redundant for any disease d œ D 

with mutually exclusive doses.  Furthermore, recall that the variable  œ ZP
djZ + »{0} is the 

number of extra vaccine doses administered for disease d œ DNE in all time periods t œ T such 

that Pdjt = 1, and constraint (4) is also redundant provided that the inequality in constraint (1) 

becomes an equality for all disease d œ DNE by subtracting the slack variable .  Therefore, 

if every disease has mutually exclusive doses, then VFSLBREP(O) simplifies to the 

following integer program VFSLBREP(O)-MED (to denote the optimization model where 

each disease d œ D has mutually exclusive doses).  

P
djZ

VFSLBREP(O)-MED 

  Minimize ∑ ∑  +  
∈ ∈Tt Vv tvv Xc ( )( )∑ ∑∈ =

+
NE

d

Dd
R
dd

n

j
P
djd ZZ γρ

1      
    
  Subject to 
     ∑ ∑∈ ∈Tt Vv vdtvdjt IXP > 1     for all d œ DE, j = 1,2,…,nd, 
  

∑ ∑∈ ∈Tt Vv vdtvdjt IXP  –   = 1   for all d œ DP
djZ NE, j = 1,2,…,nd, 

 
     ∑ ∑ –  = 0    for all d œ D

∈ ∈Tt Vv vdtvdt IXR R
dZ NE,     

     Xtv œ {0,1}       for all t œ T, v œ V,    

     œ ZP
djZ + »{0}     for all d œ DNE, j = 1,2,…,nd, 
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     œ ZR
dZ + »{0}     for all d œ DNE.     

 Since all of the diseases in the 2006 Recommended Childhood Immunization Schedule 

have mutually exclusive doses, the simplification of VFSLBREP(O) to VFSLBREP(O)-

MED has practical implications. 

Example 14 

This extends Example 1 for the childhood immunization schedule depicted in Figure 2.  

From Example 1, the formulation for VFSLBP(O) (excluding redundant constraints) for this 

example is: 

Minimize   ∑∑∑∑
====

+++
8

1
4

8

1
3

8

1
2

8

1
1 322

t
t

t
t

t
t

t
t XXXX

Subject to 

   1343124211411 ≥+++++ XXXXXX  

1444134312421 ≥+++++ XXXXXX  

18481747164615451 ≥+++++++ XXXXXXXX  

   1131211 ≥++ UUU

214131211 ≥+++ UUUU  

    31817161514131211 ≥+++++++ UUUUUUUU   

111411 UXX ≥+  

122421 UXX ≥+  

133431 UXX ≥+  

144441 UXX ≥+  

155451 UXX ≥+  

166461 UXX ≥+  

177471 UXX ≥+  

     188481 UXX ≥+

13432 ≥+ XX  

14442 ≥+ XX   

18482747264625452 ≥+++++++ XXXXXXXX  

1848374736463 ≥+++++ XXXXXX  
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}1,0{∈tvX         for all t œ T, v œ V  

}1,0{1 ∈tU         for all t œ T.  

Suppose that DNE = {2} and r2 = g2 = 2, then for disease d = 2, Rdt = 1(0) for time period t = 

1,2(3,4,5,6,7,8).  Therefore, the formulation for VFSLBREP(O) for this example follows 

(since disease d = 2 has mutually exclusive doses). 

Minimize   R

j

P
j

t
t

t
t

t
t

t
t ZZXXXX 2

3

1
2

8

1
4

8

1
3

8

1
2

8

1
1 22322 +++++ ∑∑∑∑∑

=====

Subject to 

   1343124211411 ≥+++++ XXXXXX  

1444134312421 ≥+++++ XXXXXX  

18481747164615451 ≥+++++++ XXXXXXXX  

   1131211 ≥++ UUU

214131211 ≥+++ UUUU  

    31817161514131211 ≥+++++++ UUUUUUUU   

111411 UXX ≥+  

122421 UXX ≥+  

133431 UXX ≥+  

144441 UXX ≥+  

155451 UXX ≥+  

166461 UXX ≥+  

177471 UXX ≥+  

188481 UXX ≥+  

1213432 =−+ PZXX  

1224442 =−+ PZXX   

1238482747264625452 =−+++++++ PZXXXXXXXX  

0224221412 =−+++ RZXXXX  

1848374736463 ≥+++++ XXXXXX  

}1,0{∈tvX         for all t œ T, v œ V   
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}1,0{1 ∈tU         for all  t œ T 

P
jZ 2 , œ ZRZ 2

+ »{0}      for j = 1,2,3.  Ñ 

5.2 Computational Complexity and Model Extensions 

This section presents the computational complexity of VFSLBREP and describes several 

model extensions motivated from practical issues in pediatric immunization.  Theorem 12 

states that VFSLBREP is NP-complete. 

THEOREM 12: VFSLBREP is NP-complete in the strong sense. 

PROOF:  Let DNE = «, then VFSLBREP becomes VFSLBP, which is NP-complete in the 

strong sense.  Furthermore, let cv = 0 for all v œ V, then VFSLBREP becomes VFSREP, 

which is NP-complete in the strong sense.  † 

The proof of Theorem 12 suggests several special cases of VFSLBREP that remain NP-

complete.  In particular, VFSLBP and VFSREP are both NP-complete special cases of 

VFSLBREP.  Therefore, other NP-complete special cases of VFSLBREP, as well as special 

cases that are solvable in polynomial time, are extensions of the cases described in Section 

3.2 for VFSLBP and Section 4.2 for VFSREP.  For example, Theorem 13 is a natural 

extension from Section 4.2.  Define the linear programming (LP) relaxation of 

VFSLBREP(O)-MED as the LP model of VFSLBREP(O)-MED along with the relaxed 

binary variable constraint  0 < Xtv < 1 for all time periods t œ T and vaccines v œ V and, for all 

diseases d œ DNE, the relaxed integer variable constraints >P
djZ  0 for dose j = 1,2,…,nd, and 

 >P
dZ  0. 

THEOREM 13: If Val(v) = 1 for all vaccines v œ V, then the LP relaxation of 

VFSLBREP(O)-MED  yields an optimal integer solution. 

PROOF:  See the proof of Theorem 9, since the constraint matrix for the LP relaxation of 

VFSLBREP(O)-MED is equivalent to the constraint matrix for the LP relaxation of 

VFSREP(O)-MED.  † 

There are several formulation extensions of VFSLBREP(O) motivated from practical 

issues in pediatric immunization.  Some of these model extensions apply to any arbitrary 

childhood immunization schedule while other extensions are specific to a given childhood 

immunization schedule.  Four model extensions are now described.  Note that these model 
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extensions also apply to VFSLBP(O) and VFSREP(O) since they are both special cases of 

VFSLBREP(O). 

 The first model extension of the formulation for VFSLBREP(O) is for the objective 

function.  Given a flexible childhood immunization schedule (i.e., a childhood immunization 

schedule where each dose of vaccine may be administered in several time periods (e.g., |Tdj| > 

2 for all d œ D, j = 1,2,…,nd)), it is likely that there will exist multiple binary variable 

solutions that are optimal, particularly when the vaccine set contains several monovalent 

vaccines.  For example, consider the constraint 1312111 ≥++ XXX  for some disease d œ D 

and dose 1.  Clearly, if vaccine v = 1 is a monovalent vaccine, then the optimal binary 

variable solution must contain 0,0,1 312111 === XXX ; 0,1,0 312111 === XXX ; or 011 =X  

.  Clearly, the objective function contribution from vaccine v = 1 would be the 

same regardless if it is administered in time period t = 1, 2, or 3.  Likewise, consider the 

additional constraint  for disease d’ œ D, dose 1, where vaccine v = 2 is 

also a monovalent vaccine.  In the formulation of VFSLBREP(O) it is optimal to satisfy dose 

1 in time period t = 1 for disease d œ D and in time period t = 2 for disease d’ œ D.   

Practically speaking, however, it is clearly better to satisfy both doses in time period t = 1, 

since there are costs associated with each clinic visit.  Some of these costs include time for 

the medical staff, insurance costs and co-pays, and lost wages from time off work for the 

parent/guardian to attend the clinic visit.  Therefore, a practical extension of the formulation 

for VFSLBREP(O) is to capture the cost of a clinic visit.  To model this extension, some 

additional parameters and decision variables are needed.  Define c

1,0 3121 == XX

1322212 ≥++ XXX

C as the cost of a clinic 

visit and let Yt = 1 if in time period t œ T, a dose of a vaccine is administered to immunize 

against some disease d ∈ D, 0 otherwise (i.e., Yt = 1 in time period t œ T if Xtv = 1 for some 

vaccine v œ V).  Therefore, the objective function for VFSLBREP(O) the captures the cost of 

a clinic visit is     

Minimize  + ∑ ∑∈ ∈Tt Vv tvv Xc ∑ ∈
+

NEDd
R
dd

P
dd ZZ γρ  +  ∑∈Tt tCYc    

subject to constraints (1)-(8) in the formulation of VFSLBREP(O) with the additional 

constraints  

Xtv < Yt          for all t œ T, v œ V 

Yt  œ {0,1}       for all t œ T. 
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 A second model extension of the formulation for VFSLBREP(O) arises from another 

practical issue; the ACIP and AAFP currently recommend brand-matching for certain 

vaccines (CDC 2002).  For example, if a child’s first dose of vaccine to immunize against 

diphtheria, tetanus, and pertussis (DTaP) comes from manufacturer m, then each subsequent 

dose of DTaP vaccine should also come from manufacturer m.  To model this extension, 

some additional notation is needed.  Define Dm Œ D as the set of diseases requiring brand-

matching and partition the vaccine set V by vaccine manufacturers (i.e., V = {V1,V2,…,VM}, 

where M is the number of manufacturers).  The brand-matching constraints require that a 

vaccine from the same manufacturer is used for each dose requirement for disease d œ Dm.  

Therefore, for manufacturer i = 1,2,…,M, define the following set of constraints 

∑ ∑∈ ∈Tt Vv vdtvdjt
i

IXP  > ∑ ∑∈ ∈ +Tt Vv vdtvtjd
i

IXP )1(   for all d œ Dm, j = 1,…,(nd -1). 

These constraints added to the formulation for VFSLBREP(O) will enforce brand-matching. 

 The third model extension of the formulation for VFSLBREP(O) is also motivated by 

recommendations from the ACIP and AAFP.  Many vaccines should not be administered 

until a child has reached a certain age (CDC 2002).  For example, a vaccine containing 

antigens for Hepatitis A should not be administered to children less than one year of age 

(CDC 2003).  To model this extension, an additional parameter is needed.  Define  

- td œ T as the first time period that a vaccine that immunizes against disease d œ D 

may be administered.  Therefore, it is reasonable to assume that for disease d œ D, td 

= min{t œ T: Pdjt = 1 and j = 1}. 

Therefore, the constraints 

∑ ∑= ∈

dt

t Vv vdtv IX
1

= 0    for all d œ D 

added to the formulation of VFSLBREP(O) ensure no dose of vaccine is administered for 

disease d œ D until time period td œ T. 

 The final extension of the formulation for VFSLBREP(O) involves separation 

constraints.  Many diseases in the Recommended Childhood Immunization Schedule require 

a minimum amount of time between each dose requirement of a vaccine based on biological 

constraints (CDC 2002).  These biological separation requirements for disease d œ D, dose j 

= 1,2,…,nd, are enforced by the parameter Pdjt.  For example, in the Recommended 
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Childhood Immunization Schedule, the first dose of vaccine for Haemophilus influenzae type 

b may be administered at age two months (i.e., Pdjt = 1 for disease d = Haemophilus 

influenzae type b, dose j = 1, and time period t = 3) and the second dose may be administered 

at age four months (i.e., Pdjt = 1 for disease d = Haemophilus influenzae type b, dose j = 2, 

and time period t = 4), which reflects a recommended separation of two months between 

doses as well as a minimum separation of four weeks (see CDC 2002).  However, in recent 

years, the ACIP and AAFP have simply recommended a vaccine series with 

recommendations on the number of months between each dose in a series (CDC 2006).  For 

example, the Hepatitis A series was added to the Recommended Childhood Immunization 

Schedule in 2006, which consists of two doses of vaccine that is recommended for all 

children at age one year with at least six months between doses (Figure 1 reflects this 

biological spacing requirement).  To model a vaccine series, additional separation constraints 

may be included in VFSLBREP(O) that capture the biological spacing requirements between 

doses.  To describe these separation constraints, the following parameter is needed in 

addition to the parameter td described above.   Let 

- sd œ Z+ »{0} be the number of time periods required between each dose requirement 

for disease d œ D. 

Therefore, the separation constraints Σds
k 0=Σ v∈V X(t+k)v Ivd < 1 for all diseases d œ D and time 

periods t = td, td+1,…,t-sd  will enforce biological spacing requirements.  However, these 

constraints assume both a homogeneous childhood immunization schedule (a childhood 

immunization schedule where each time period represents the same length of time) and that 

sd is independent of the dose j = 1,2,…,nd for all diseases d œ D.   Clearly, any non-

homogeneous childhood immunization schedule (such as depicted in Figure 1) can be 

transformed into a homogeneous childhood immunization schedule by adding additional time 

periods.  In practice, however, sd often changes for each dose requirement.  For example, the 

minimum number of time periods between the third and fourth dose for Haemophilus 

influenzae type b is eight weeks versus the four week minimum separation requirement 

between the first and second dose (CDC 2002).  Therefore, dose j is appended to the 

parameter sd, and hence, sdj œ Z+ »{0} is the number of time periods required between dose 

requirements j and  j+1 for disease d œ D and  j = 1,2,…,nd, where = 0.  This implies the 

following separation constraints: 

ddns
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djs
k 0=Σ Σv∈V X(t+k)v Ivd < 1 for all d œ D,  j = 1,2,…,nd, t = td, td+1,…,t-sdj such that Pdjt  = 1 (SC). 

These separation constraints result in a more restrictive formulation of VFSLBREP(O). 

These separation constraints lead to an interesting complexity result for VFSREP.  When 

separation constraints (SC) are enforced for all diseases d œ D, then VFSREP is NP-complete 

for this more restrictive formulation even when DNE = «.  This result is stated in Theorem 14.   

THEOREM 14: VFSREP with separation constraints (SC) is NP-Complete in the strong 

sense when there is no restriction on extraimmunization (i.e., DNE = «).  

PROOF:  First, VFSREP with separation constraints (SC) (VFSREPw/SC) is in NP since 

VFSREP is in NP and the separation constraints, Σdjs
k 0=Σ v∈V X(t+k)v Ivd < 1 for all d œ D,  j = 

1,2,…,nd, and t = td, td+1,…,t-sdj such that Pdjt = 1, may be checked in O(ut2d) time. 

 To show that VFSREPw/SC is NP-complete, a polynomial transformation from 1-in-3 3-SAT 

with 2-SAT to VFSREPw/SC is constructed.   

 Given an arbitrary instance of 1-in-3 3-SAT with 2-SAT, define a particular instance of 

VFSREPw/SC as follows:  Set T = {1}, D = DE = {1,2,…,m+n}, DNE = «, V = {1,2,…,2n}, 

and .  Clearly, s121 ==== +nmnnn L 1d = 0 and td = 1 for all d œ D.  Let the Boolean 

variables y1,y2,…,yn correspond to vaccines 1,2,…,n, respectively, and 1-y1,1-y2,…,1-yn 

correspond to vaccines n+1,n+2,…,2n, respectively.  Let clauses C1,C2,…,Cm correspond to 

diseases 1,2,…,m, respectively, and Cm+1,Cm+2,…, Cm+n correspond to diseases 

m+1,m+2,…,m+n, respectively.  Set the binary parameters as follows: 

    Iv=k,d =  
otherwise,

lyrespective ,,,2,1;,,2,1for  C clausein  is  literal  theif
0
1 nmdnky dk +==

⎩
⎨
⎧ KK

Iv=(n+k),d =  
otherwise.

lyrespective ,,2,1;,,2,1for  C clausein  is )-(1 literal  theif
0
1 nmdnky dk +==

⎩
⎨
⎧ KK

 Therefore, the vaccines that immunize against disease d = 1,2,…,m+n, are determined 

by the literals in clause Cd.  Set Pdjt = 1 for all d œ D, j = 1, 1=t , and Qdt = 1 for all d œ D, t 

= 1.  Lastly, Rdt = 0 for all d œ D since DNE = «.  Clearly, this transformation can be made in 

polynomial time in the size of the arbitrary instance of 1-in-3 3-SAT with 2-SAT.  

Furthermore, this transformation results in a particular instance of VFSREP where each d œ 

D has mutually exclusive doses. 

123 



 To complete the proof, it is necessary to show that a yes for this particular instance of 

VFSREPw/SC implies a yes for the arbitrary instance of 1-in-3 3-SAT with 2-SAT, and a yes 

for the arbitrary instance of 1-in-3 3-SAT with 2-SAT implies a yes for this particular 

instance of VFSREPw/SC. 

 Suppose the answer to the particular instance of VFSREPw/SC is yes.  The separation 

constraints require Σv∈V  X1v Ivd < 1 for all d œ D while the dose requirement constraints 

require Σv∈V  X1v Ivd > 1 for all d œ D.  Therefore, there must exist values for the binary 

variables X1v, v œ V such that Σv∈V  X1v Ivd = 1 for all d œ D.  Clearly, Ivd = 1 for v œ V, d œ D, 

corresponds to a literal (yk or 1-yk  for some k = 1,2,…,n) that is in clause Cd, d = 1,2,…,m+n.  

Therefore, if Σv∈V  X1v Ivd = 1 for all d œ D, then the binary variable with X1v = 1 for each 

constraint corresponds to the one literal that satisfies clause Cd, for d = 1,2,…,m+n.  

Moreover, Σv∈V  X1v Ivd = 1 for all nmmmd +++= ,,2,1 K , and since vaccine k and (n+k) 

immunize against disease d = m+k, the binary variables X1k and X1(n+k) exist together in the 

constraint for disease d = m+k, which implies both yk and 1-yk cannot be one for k = 1,2,…,n.  

Therefore, there is a Boolean variable assignment that satisfies all m+n clauses with exactly 

one true literal, meaning the answer to the arbitrary instance of 1-in-3 3-SAT with 2-SAT is 

yes.  

 Now suppose the answer to the arbitrary instance of 1-in-3 3-SAT with 2-SAT is yes.  

Then there exists a Boolean variable assignment that results in all m+n clauses being 

satisfied by exactly one literal.  For each Boolean variable yk, k = 1,2,…,n, there are two 

corresponding binary variables where one such variable (X1k) corresponds to yk and the other 

variable (X1(n+k)) corresponds to 1- yk.  Therefore, if yk =1 (0), set X1k = 1 (0) and X1(n+k) = 0 

(1).  The claim is these values for X1v, v = 1,2,…,2n result in a yes answer for the particular 

instance of VFSREPw/SC.  Suppose there does not exist values for the binary variables X1v, v 

œ V, such that Σv∈V X1v Ivd = 1 for all d œ D.  By definition, the constraints for 

 correspond to the knmmmd +++= ,,2,1 K th literal pair yk and 1-yk, and hence, if these 

constraints are not satisfied then neither yk nor 1-yk equal one, which is a contradiction.  

Therefore, for all possible binary variable values of X1v, v œ V, there must exist some 

 such that Σmd ,,2,1 K= v∈V X1vIvd ∫ 1, which implies Σv∈V X1vIvd = 0 or Σv∈V X1vIvd > 1.  In 

either case, the binary variable values of X1v correspond to the Boolean variable values for yk, 
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k = 1,2,…,n, and Ivd identifies the literals in clause Cd for nv 2,,2,1 K= , d = 1,2,…,m.  

Therefore, if for all possible binary variable values, Σv∈V X1vIvd = 0 for some disease d = 

1,2,…,m, then clause Cd is not satisfied, which contradicts 1-in-3 3-SAT with 2-SAT being 

yes.  Likewise, Σv∈V X1vIvd > 1 for some disease d = 1,2,…,m implies clause Cd is satisfied by 

more than one literal, which, again, is a contradiction.  Therefore, the values for X1v, 

, defined above result in a yes answer for the particular instance of 

VFSREPw/SC.  

nv 2,,2,1 K=

 Furthermore, note that VFSREPw/SC is not a number problem (see Garey and Johnson 

1979) since the only numbers occurring in an instance of VFSREPw/SC are the dose 

requirements nd for all d œ D, which are clearly bounded by t = |T|, and hence, by the length 

of the instance.  Therefore, VFSREPw/SC is strongly NP-complete.  † 

5.3 Algorithms and Heuristics 

This section discusses how the DP algorithm and the MAX Rounding and Greedy heuristics 

for VFSREP(O) presented in Chapter 4 may be extended to VFSLBREP(O).  Section 5.3.1 

discusses the dynamic programming algorithm for VFSLBREP(O), and Section 5.3.2 

discusses the Rounding, MAX Rounding, and Greedy heuristics for VFSLBREP(O)-MED and 

VFSLBREP(O).   

5.3.1 Dynamic Programming Algorithm 

This section presents and analyzes a DP algorithm for VFSLBREP(O), which is an extension 

of the DP presented for VFSREP(O).   

 Given the stated set of inputs for VFSLBREP(O), the DP algorithm solves 

VFSLBREP(O) one period at a time beginning at the first time period (i.e., t = 1), and steps 

through each time period in T until t = t.  The parameters, sets, states, state space, decisions 

and decision space for the DP algorithm for VFSLBREP(O) are those previously defined for 

VFSREP(O) in Section 4.3.1.    

 Given that decision Yt = St – St-1, then a transition from state St-1 œ Wt-1 to state St œ Wt  

requires that a dose of vaccine be administered in time period t œ T for each disease in the set 

Dt = {d œ D : Ytd = 1}.  The sets Vt = {v œ V: Ivd = 1 and d œ Dt} (i.e., the set of vaccines that 

immunize against any disease that requires vaccination in time period t œ T) and Dt define a 
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sub-instance of VFSLBREP(O), termed SCP-IP(Yt).  To describe SCP-IP(Yt), recall the 

following definitions:   

- DEt = DE … Dt  and DNEt = DNE … Dt for any time period t œ T, 

- œ ZP
dtZ + »{0} be the number of extra doses of vaccine administered for disease d œ 

DNE in time period t œ T such that Ytd = 1, 

- œ ZR
dtZ + »{0} be the number of extra doses of vaccine administered for disease d œ 

DNE in time period t œ T such that Ytd = 0, (i.e., for disease d œ DNE\DNEt). 

The specific sub-instance for VFSLBREP(O) for time period t œ T and decision Yt œ Ft is 

given by 

SCP-IP(Yt)  

Minimize  c
tv V∈∑ v Xtv  + ∑∑ ∈∈

+
NEtNENEt DDd

R
dtdDd

P
dtd ZZ

\
γρ     

  Subject to 

     X
tv V∈∑ tv  Ivd  > 1       for all d œ DEt, 

     X
tv V∈∑ tv  Ivd  –  = 1      for all d œ DP

dtZ NEt, 

     X
tv V∈∑ tv  Ivd  –  = 0      for all d œ DR

dtZ NE\ DNEt, 

     Xtv œ {0,1}        for all v œ Vt,   

     , œ ZP
dtZ R

dtZ + »{0}      for all d œ DNE. 

 To characterize the cost of decision Yt œ Ft, which is the cost of transitioning from state 

St-1 œ Wt-1 in time period (t – 1) œ T to state St œ Wt  in time period t œ T, define the one-

period cost function Ct(St-1, Yt) as the value of the objective function in time period t œ T 

given state St-1 œ Wt-1 and decision Yt œ Ft.   Note, however, that this one-period cost in time 

period t œ T depends only on decision Yt œ Ft, and hence, the optimal value of SCP-IP(Yt) = 

Ct(St-1, Yt) = Ct(Yt).  Therefore, the optimal one-period value over all possible decisions in 

time period t œ T is given by C
tt Φ∈ 

min
Y

t(Yt).    

 Define Zt(St) as the minimum value of the objective function of a vaccine formulary that 

immunizes against all diseases through time period t œ T subject to the number of required 

doses at the end of time period t œ T being equal to St œ Wt .  Therefore, the DP optimality 

equation is given by the recurrence relation 
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Zt(St) = {C
ttttttt YSSSY +=Ω∈Φ∈ −−− 111 :, 

min t(Yt) + Zt-1(St-1)}. 

Furthermore, the minimum value of the objective function that satisfies a given childhood 

immunization schedule is given by 

z* = Z
ττ Ω∈S

min t(St), 

where Wt is the state space for the final time period t œ T.  The DP algorithm for 

VFSLBREP(O) is now formally given. 

Dynamic Programming Algorithm for VFSLBREP(O) 

Step 1. Initialize: 
a. Initial state, S0 ≠ 0 (the d-dimensional zero vector) 
b. Initial objective function contribution, Z0(S0) ≠ 0 
c. Set md0, Md0 ≠ 0 for all d œ D 
d. Initial stage, t ≠ 1 

Step 2. Compute  
Zt(St) = {C

ttttttt YSSSY +=Ω∈Φ∈ −−− 111 :, 
min t(Yt) + Zt-1(St-1)} 

for each state St œ Wt. 
Step 3. If t < t, then t ≠ t + 1 and return to Step 2.  Else, stop and return z* = 

Z
ττ Ω∈S

min t(St). 

  

To determine the complexity of this DP algorithm, suppose that the SCP-IP(Yt) problem 

instance with d diseases and u vaccines can be solved in O(TSCP-IP) time.  Furthermore, 

define SMax to be the maximum number of possible states within any time period t œ T.  Each 

time period requires O((SMax)2ÿTSCP-IP) time, and hence, with t time periods, the DP 

algorithm for VFSLBREP(O) executes in O(t(SMax)2ÿTSCP-IP) time.  The DP algorithm’s 

worst case complexity may be improved, however, since each SCP-IP(Yt) instance depends 

only on the decision vector Yt œ Ft.  Therefore, SCP-IP(Yt) for decision Yt œ Ft only needs to 

be solved once.  It can be shown that the complexity of solving for all possible decisions is 

O(ud2d).  This means that for each time period t œ T, the complexity of Step 2 becomes 

O(d(SMax)2), and hence, the DP algorithm has a O(td(SMax)2 + ud2d) worst case time 

complexity, which is an improvement over O(t(SMax)2ÿTSCP-IP) when SMax is large.  To exploit 

this added efficiency, the implementation of the DP algorithm may employ a ‘branch and 

remember’ recursive algorithm to find the optimal value for each SCP-IP(Yt) instance.  

Therefore, SCP-IP(Yt) need only be computed once using the recursive algorithm SCP-IP.  
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This recursive algorithm assumes rd = gd for all diseases d œ DNE.  Initially, the given set of 

diseases for Yt is Dt, and hence, D’ = Dt.    

SCP-IP(D’)    
If D’ = «, return 0 as the solution value 
If SCP-IP(Yt) for D’ = {d œ D : Ytd = 1} has been solved previously, return its optimal 
value 
Select a disease d œ D’ that requires immunization 
Let V’ = {v œ V: Ivd = 1} (set of vaccines v œ V that immunize against disease d œ D’) 
Set BestValue = +¶ 
For each vaccine v œ V’  

Let D* = D’ \ {d œ D’: Ivd = 1} 
Value = SCP-IP(D*) (find the optimal penalty for the set of diseases D*) 
Let DNEv = {d œ D′ : d œ DNE, Ivd = 1} 
Set Penaltyv = 0 
For each disease d œ DNEv 
 Penaltyv = Penaltyv + gd 
If Value + cv + Penaltyv < BestValue 

   BestValue = Value + cv + Penaltyv
  Store BestValue for D’ (save the optimal solution for the set of diseases D’) 

Return BestValue 
 
 Despite its exponential worst case complexity run time, the DP algorithm for 

VFSLBREP(O) offers several advantages as described in Section 3.3.1 for VFSLBP(O). 

5.3.2 Heuristics 

This section discusses how the Rounding, MAX Rounding, and Greedy heuristics for 

VFSREP(O) presented in Chapter 4 may be extended to VFSLBREP(O).    

 Both the Rounding and MAX Rounding heuristics use the solution from a linear program 

(LP) to construct a feasible binary solution.  Relaxing the binary and integer constraints for 

the decision variables in VFSLBREP(O)-MED yields the LP relaxation 

Minimize  + ∑ ∑∈ ∈Tt Vv tvv Xc ( )( )∑ ∑∈ =
+

NE

d

Dd
R
dd

n

j
P
djd ZZ γρ

1      

  Subject to 

     ∑ ∑ >
∈ ∈Tt Vv vdtvdjt IXP  1      for all d œ DE, j = 1,2,…,nd, 

∑ ∑∈ ∈Tt Vv vdtvdjt IXP  –   = 1    for all d œ DP
djZ NE, j = 1,2,…,nd, 

     ∑ ∑ –  = 0     for all d œ D
∈ ∈Tt Vv vdtvdt IXR R

dZ NE,    

     0 < Xtv < 1        for all t œ T, v œ V,   
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      >P
djZ  0         for all d œ DNE, j = 1,2,…,nd, 

     >R
dZ  0        for all d œ DNE.    

Recall that  denotes the optimal decision vector for the LP relaxation of VFSLBREP(O)-

MED and , t œ T, v œ V, , d œ D

*
LPX

tvLPX * *P
djZ NE, j=1,2,…,nd, and , d œ D*R

dZ NE, denote the 

optimal values for the decision variables in the LP relaxation.  Likewise, recall that ad ª 

 for all diseases d œ D and a ª a)max)((
,...,2,1 djtTtnjvdVv PI

d
∈

=
∈ ΣΣ

Dd∈
max d.  The Rounding heuristic for 

VFSLBREP(O)-MED is then equivalent to the Rounding heuristic for VFSREP(O)-MED and 

is now is now formally given. 

Rounding Heuristic for VFSLBREP(O)-MED  
Step 1. Solve the LP relaxation of VFSLBREP(O)-MED  
Step 2. Xtv ≠ 0 for all t œ T and v œ V 
Step 3. For all t œ T and v œ V 

a. If >*
tvLPX  1/a, then Xtv ≠1 

Step 4. For all d œ DNE 
a. For all j = 1,2,…,nd 

i.  ≠ ΣP
djZ t∈TΣv∈V Pdjt Xtv Ivd – 1 

b. ≠ ΣR
dZ t∈TΣv∈V Rdt Xtv Ivd 

Step 5. Compute and return∑ ∑∈ ∈Tt Vv tvv Xc + ( )( )∑ ∑∈ =
+

NE

d

Dd
R
dd

n

j
P
djd ZZ γρ

1
. 

Lemma 10 establishes the feasibility of the solution returned by the Rounding heuristic.  

LEMMA 10:  The Rounding heuristic for VFSLBREP(O)-MED returns a feasible binary 

solution X, (i.e., a decision vector that satisfies the childhood immunization 

schedule). 

PROOF:  Follows directly from the proof of Lemma 9.  † 

 Given that linear programming is solvable in polynomial time, it then follows that the 

Rounding heuristic executes in polynomial time.  Theorem 15 shows that the value of the 

binary solution returned by the Rounding heuristic is guaranteed to be no worse than a ÿzIP.  

THEOREM 15: The Rounding heuristic is an a-approximation algorithm for VFSREP(O)–

MED. 

PROOF: Clearly, the Rounding heuristic executes in polynomial time since LP executes in 

polynomial time.  Recall that the optimal objective function values of VFSLBREP(O)-MED 

and its LP relaxation are denoted by zIP  and zLP, respectively, where zLP < zIP (since the 
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feasible region of VFSLBREP(O)-MED is contained in the feasible region of its LP 

relaxation).  It remains to show that ∑ ∑∈ ∈Tt Vv tvv Xc + + ) <∑ ∑
∈ =NE

d

Dd

n

j

P
djd Z

1

(ρ R
dd Zγ  a ÿzIP.  By 

step 4 of the algorithm,  

∑ ∑∈ ∈Tt Vv tvv Xc + + )  = ∑ ∑
∈ =NE

d

Dd

n

j

P
djd Z

1

(ρ R
dd Zγ ∑ ∑∈ ∈Tt Vv tvv Xc + P∑ ∑ ∑∑

∈ = ∈ ∈NE

d

Dd

n

j Tt Vv
d

1

((ρ djt Xtv  

Ivd – 1) + dγ  ∑∑
∈ ∈Tt Vv

Rdt Xtv Ivd ) 

< ( a) +∑ ∑∈ ∈Tt Vv vc *
tvLPX ∑

∈ NEDd
∑∑
∈ ∈Tt Vv

( ∑
=

dn

j
d

1

(ρ Pdjt ( a)I*
tvLPX vd – 1) + dγ Rdt ( a)I*

tvLPX vd)       

  (since  Xtv = 1 only if a >*
tvLPX  1) 

 = a ∑ ∑  + a
∈ ∈Tt Vv vc *

tvLPX ∑
∈ NEDd

∑∑
∈ ∈Tt Vv

( ∑
=

dn

j
d

1

(ρ  Pdjt I*
tvLPX vd – 1) + dγ Rdt 

*
tvLPX Ivd ) 

        = a( + (∑ ∑∈ ∈Tt Vv vc *
tvLPX ∑

∈ NEDd
∑
=

dn

j
d

1

(ρ ∑∑
∈ ∈Tt Vv

Pdjt 
*

tvLPX Ivd – 1)+ dγ Σt∈TΣv∈V 
*

tvLPdt XR  Ivd )) 

=  a(  + )) ∑ ∑∈ ∈Tt Vv vc *
tvLPX ∑ ∑

∈ =NE

d

Dd

n

j

P
djd Z

1

*(ρ *R
dd Zγ

=  a ÿzLP 

 <  a ÿzIP   (since zLP < zIP).  † 

Theorem 15 implies that Corollaries 7 and 8 for VFSREP(O)-MED presented in Section 

4.3.2 are also valid for VFSLBREP(O)-MED.   

 If *
LPX  contains several fractional variables, then the Rounding heuristic tends to round 

too many variables to one, thereby yielding a significant amount of extraimmunization.   

Instead of rounding all variables greater than or equal to the 1/a threshold, it seems 

reasonable to round only a few variables with large fractional values (i.e., variables closest to 

one), since these variables are more likely to equal one in the optimal solution.  The MAX 

Rounding heuristic limits the number of rounded variables by selecting the variables with 

large fractional values. 

 To present the MAX Rounding heuristic, recall the notation D = {(d, j): d œ D, j = 

1,2,…,nd } to be the set of all diseases ordered by dose, where |D| = , and, for all time dd nδ
1=Σ
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periods t œ T and vaccines v œ V, Ctv = {(d, j) œ D: Ivd = 1 and Pdjt = 1}, which specifies the 

diseases and dose that vaccine v œ V immunizes against in time period t œ T.  Therefore, Ctv 

Œ D for all time periods t œ T and vaccines v œ V.  Furthermore, in the case when all diseases 

d œ D have mutually exclusive doses, at most one (d, j) œ D for all diseases d œ D is 

contained in any set Ctv, since for a given disease d œ D and time period t œ T, Pdjt = 1 for at 

most one dose j = 1,2,…,nd, and hence, each set Ctv does not contain multiple doses for any 

disease d œ D.   Lastly, recall that ftv = for all time periods t œ T and vaccines v œ V, 

which specifies the value of vaccine v œ V in time period t œ T.  Therefore, the MAX 

Rounding heuristic limits the number of rounded variables by greedily selecting (at each 

iteration) the most valuable available vaccine v œ V that immunizes against the most disease 

doses (not yet covered) in time period t œ T (i.e., rounds the variable that 

maximizes ) until every disease dose (d, j) œ D is covered by some vaccine v œ V in 

time period t œ T.  The MAX Rounding heuristic is now formally given.  

*
tvLPX

*
tvLPX

|| tvtv Cf ⋅

MAX Rounding Heuristic for VFSLBREP(O)-MED 
Step 1. Initialize: 

a. Solve the LP relaxation of VFSLBREP(O)-MED  
b. ftv ≠ for all t œ T, v œ V such that >*

tvLPX *
tvLPX  1/a 

c. Xtv ≠ 0 for all t œ T and v œ V 
d. ≠ CtvĈ tv for all t œ T and v œ V 

Step 2. While C = ∫ D do U
}1:{ =tvXtv
tvC

a. (t’,v’) ≠ |  (select the non-empty set  with the largest 

fractional value times the number of disease doses covered by vaccine v œ 
V in time period       t œ T)  

VvTt ∈∈ ,
maxarg ˆ| tvtv Cf ⋅ tvĈ

b. Xt’v’ ≠ 1  (administer vaccine v’ œ V in time period t’œ T) 
c. ≠ \  for all t œ T and v œ V (remove all the disease doses 

covered by vaccine v’œ V in time period t’ œ T from all remaining sets) 
tvĈ tvĈ ''

ˆ
vtC

Step 3. For all d œ DNE 
a. For all j = 1,2,…,nd 

i. ≠ ΣP
djZ t∈TΣv∈V Pdjt Xtv Ivd – 1 

b. ≠ ΣR
dZ t∈TΣv∈V Rdt Xtv Ivd 

Step 4. Compute and return∑ ∑∈ ∈Tt Vv tvv Xc + ( )( )∑ ∑∈ =
+

NE

d

Dd
R
dd

n

j
P
djd ZZ γρ

1
. 

 

131 



The MAX Rounding heuristic executes in O(TLP + |D|tu) time, where TLP is the time 

required to solve the LP relaxation of VFSLBREP(O)-MED.  Furthermore, the MAX 

Rounding heuristic returns a feasible solution, since every iteration of the while loop (i.e., 

Step 2) administers a vaccine that satisfies at least one dose requirement for some disease d œ 

D (i.e., every iteration covers at least one (d, j) œ D).  Moreover, Step 1.b. ensures that the 

solution returned by the MAX Rounding heuristic can be no worse than the solution returned 

by the Rounding heuristic, and hence, the MAX Rounding heuristic is also an a-

approximation algorithm for VFSLBREP(O)-MED. 

Like the Rounding and MAX Rounding heuristics, the Greedy heuristic for VFSREP(O)-

MED is easily adapted to VFSLBREP(O)-MED.  As before, the Greedy heuristic iteratively 

selects the vaccine with the lowest cost that also incurs the smallest penalty for 

extraimmunization and immunizes against the most disease doses.  Recall that the 

extraimmunization penalty for vaccine v œ V in time period t œ T is Wtv = , where  ∑
=∈ }1:{ vdIDd

dtw

wdt  =  
otherwise,

,...,2,1 somefor  ),(, if
),( and ,,...,2,1 somefor  ),(, if

0

}1:{

dtvNE

tvXtvdtvNE

d

d

njCjdDd
CjdnjCjdDd

tv

=∉∈
=∈=∈∈

⎪
⎩

⎪
⎨

⎧ =UC
γ
ρ

Therefore, for VFSLBREP(O)-MED, the total “cost” of vaccine v œ V in time period t œ T is 

cv + Wtv, and the Greedy heuristic is now formally given. 

Greedy Heuristic for VFSLBREP(O)-MED 
Step 1. Initialize: 

a.  Xtv ≠ 0 for all t œ T and v œ V 
b. ≠ CtvĈ tv for all t œ T and v œ V 

Step 2. While C =  ∫ D do U
}1:{ =tvXtv
tvC

a. Compute Wtv for all t œ T and v œ V (compute extraimmunization penalty 
for vaccine v œ V in time period t œ T) 

b. (t’, v’) ≠ (c
VvTt ∈∈ ,

minarg v +  (select the non-empty set  with the 

smallest “cost” per disease doses covered by vaccine v œ V in time period t 
œ T.  Break ties by selecting vaccine v œ V that immunizes against the 
most diseases in time period t œ T.) 

|ˆ|/) tvtv CW tvĈ

c. Xt’v’ ≠ 1  (administer vaccine v’ œ V in time period t’œ T) 
d. ≠ \  for all t œ T and v œ V (remove all the disease doses 

covered by vaccine v’ œ V in time period t’œ T from all remaining sets) 
tvĈ tvĈ ''

ˆ
vtC

Step 3. For all d œ DNE 
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a. For all j = 1,2,…,nd 
i. ≠ ΣP

djZ t∈TΣv∈V Pdjt Xtv Ivd – 1 

b. ≠ ΣR
dZ t∈TΣv∈V Rdt Xtv Ivd 

Step 4. Compute and return∑ ∑∈ ∈Tt Vv tvv Xc + ( )( )∑ ∑∈ =
+

NE

d

Dd
R
dd

n

j
P
djd ZZ γρ

1
. 

 
The Greedy heuristic executes in O(|D|tu) time, and returns a feasible solution, since 

every iteration of the while loop (i.e., Step 2) administers a vaccine that satisfies at least one 

dose requirement for some disease d œ D (i.e., every iteration covers at least one (d, j) œ D).  

Therefore, the Greedy heuristic should (in practice) be more efficient than the MAX 

Rounding heuristic. 

Finally, a MAX Rounding and Greedy heuristics for VFSLBREP(O) is performed by 

converting a VFSLBREP(O) instance into two distinct VFSLBREP(O)-MED instances, and 

then applying the MAX Rounding and Greedy heuristics for each VFSLBREP(O)-MED 

instance to find a feasible solution for the VFSLBREP(O) instance as described in Section 

4.3.5 for VFSREP(O).   
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Chapter 6: Conclusion and Extensions 
This chapter concludes the dissertation and presents several possible research extensions that 

are of practical and theoretical interest. 

6.1 Conclusion 

This dissertation applied operations research methodologies to designing pediatric vaccine 

formularies that capture the combinatorial explosion of alternatives and choices spawn by 

combination vaccines and ensure that immunity is safely achieved by restricting or limiting 

extraimmunization.  In particular, the dissertation presented three fundamental problems for 

designing pediatric vaccine formularies. 

 The first problem, VFSLBP, extended the research discussed in Chapter 2 by 

formulating a general decision problem and discrete optimization problem that seeks a 

minimum cost vaccine formulary for a given childhood immunization schedule.  The second 

model, VFSREP, examined the issue of extraimmunization in pediatric immunization by 

formulating a general decision problem and discrete optimization problem that seek a vaccine 

formulary for a given childhood immunization schedule that restricts extraimmunization.  

The final problem, VFSLBREP, combines VFSLBP and VFSREP by formulating a general 

decision problem and discrete optimization problem that seeks a minimum cost vaccine 

formulary for a given childhood immunization schedule that also restricts extraimmunization.  

As more combination vaccines come to market and the Recommended Childhood 

Immunization Schedule becomes more complex to include more diseases and cover more 

time periods, these problems will capture the combinatorial explosion of alternatives for 

public health policy-makers and administrators, vaccine manufacturers, pediatricians, and 

parents/guardians by identifying minimum cost vaccine formularies and schedules that safely 

use combination vaccines, which will help address safety concerns in pediatric 

immunization, reduce costs, and reduce vaccine wastage associated with extraimmunization.   

 In general, VFSLBP(O), VFSREP(O), and VFSLBREP(O) were shown to be NP-hard 

unless the vaccines, schedule parameters, or disease set are significantly restricted.  

Therefore, the existence of an algorithm that finds the optimal solution in polynomial time is 

unlikely, unless P = NP.  This dissertation presented a DP algorithm that solves VFSLBP(O), 
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VFSREP(O), and VFSLBREP(O) to optimality, but becomes intractable as the size of the 

childhood immunization schedule grows, particularly as the size of the disease set grows.   

 In Section 3.3.1, this DP algorithm for VFSLBP(O) was compared computationally to an 

IP B&B algorithm.  These results showed that the DP algorithm was significantly more 

efficient (at least eight times faster) when the size of the disease set is reasonable.  However, 

for most of the randomly generated childhood immunization schedules both the DP and IP 

B&B algorithms required at least an order of magnitude more time to execute when 

compared to the execution time of the heuristics presented in Section 3.3.  The MAX 

Rounding and Greedy heuristics returned a cost within ten percent of the optimal solution (on 

average) for each set of test problems.  Moreover, the average execution time for each 

heuristic was less sensitive to increases in the size of the childhood immunization schedule or 

the valency of the vaccine set.   

 In Section 4.3.1, this DP algorithm for VFSREP(O) was compared computationally to an 

IP B&B algorithm, namely IP-MIN.  These results showed that the DP algorithm was 

significantly more efficient (approximately 300 to 1000 times faster) when the size of the 

disease set is reasonable.  Furthermore, the execution time of the DP algorithm was 

insensitive to the size of the set DNE (the average execution time remained nearly constant at 

1.74 seconds when dNE = 4 to 1.81 seconds when dNE = 11), whereas the execution time of 

IP-MIN was sensitive to the size of the set DNE (the average execution time tripled from 518 

seconds when dNE = 4 to 1767 seconds when dNE = 11).  However, for most of the randomly 

generated childhood immunization schedules, both the DP and IP B&B algorithms required 

at least twice as much time to execute when compared to the execution time of the heuristics 

presented in Section 4.3.  Moreover, the average execution time for each heuristic was less 

sensitive to increases in the size of the childhood immunization schedule or the valency of 

the vaccine set.   

The heuristics presented in this dissertation will allow more efficient analysis of larger 

childhood immunization schedules and practical analysis involving Monte Carlo simulation 

or finding an optimal vaccine formulary for each child on a case-by-case basis, which will 

require the solution of several unique VFSLBP(O), VFSREP(O), or VFSLBREP(O) 

instances. 
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6.2 Research Extensions 

There are several avenues to further extend the research reported in this dissertation.  First, 

further research is needed to determine how the model extensions (motivated by real-world 

constraints) described in Section 5.2 affect the computational complexity and the 

performance and feasibility of the DP algorithms and heuristics for VFSLBP(O), 

VFSREP(O), and VFSLBREP(O).  Furthermore, alternative objective functions or cost 

parameters might also be considered, such as minimizing the number of injections in each 

time period, minimizing the number of time periods required to satisfy the childhood 

immunization schedule, or considering a quadractic objective function.  Next, the robust 

structure of the DP algorithm is well suited for adding uncertainty (like that described for the 

balking problem in Section 3.3.1) to VFSLBP(O), VFSREP(O), and VFSLBREP(O), which 

would make this research even more practical to the pediatric public health community.   

Other research of theoretical interest and importance is to determine or strengthen 

approximation bounds provided for the heuristics presented here, and to explore non-

approximability for VFSLBP(O), VFSREP(O), and VFSLBREP(O).  For example, the 

approximation bounds for the heuristics for VFSLBP(O)-MED do not apply to the solution 

returned by the A heuristic for VFSLBP(O), since the A heuristic for VFSLBP(O) converts a 

VFSLBP(O) instance into two distinct VFSLBP(O)-MED instances.  Moreover, developing 

new heuristics with better approximation bounds, added efficiency, and/or improved 

empirical results is also of interest.  

 Finally, extending the problems described in this dissertation to other applications areas 

in health care or other industries may provide practical and useful insights.  For example, 

consider the Air Force Acquisition with Limited Budget Problem (AFALBP).   To describe 

this problem, some additional background is needed.  The United States Department of 

Defense (DoD) has a resource allocation process called the Planning, Programming, and 

Budgeting System (PPBS).  As a department within DoD, the United States Air Force 

participates in this process.  With billions of dollars to allocate across personnel, weapon 

systems, base infrastructures, and military operations, the budgeting process is quite 

daunting.  Within the Department of the Air Force, there exist several major commands 

(MAJCOMS) that are responsible to train, organize, and equip the force.  Each MAJCOM 

participates in the PPBS process by first developing a long-term strategic master plan, then 
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using this plan, each MAJCOM programs a six year resource allocation proposal subject to 

fiscal constraints.  Over the past decade, several MAJCOMS have begun using optimization 

models to make better (more quantitative and justifiable) resource allocation decisions.   

Typically, each MAJCOM has a mission that is defined by several key tasks.  The MAJCOM 

develops and procures weapon systems such as satellites, fighters, bombers, and ballistic 

missiles to accomplish these key mission tasks.  Therefore, an important objective for each 

MAJCOM is to cover these mission tasks by designing a strategic plan for weapon system 

development/procurement within a limited budget environment.  This problem, termed the 

Air Force Acquisition with Limited Budget Problem, asks whether it is possible to design a 

procurement schedule that covers the key mission tasks within a fiscally constrained budget 

and shares the same fundamental structure as VFSLBP.  This problem is now formally stated. 

Air Force Acquisition with Limited Budget Problem (AFALBP) 

Given: 

- A set of time periods, T = {t1, t2, …., t|T|}, 

- a set of mission tasks, M = {m1,m2, …., m|M|},  

- a set of systems S = {s1, s2, …., s|S|} available for procurement to provide coverage for 

the |M| mission tasks, 

- the number of coverage periods that a system must be procured for coverage of |M| 

mission tasks,  n1,n2,…, n|M|, 

- the cost of the |S| systems, c1,c2,…,c|S|, 

- a budget B, 

- a set of binary parameters that indicate which systems cover which mission tasks.  

Therefore, Ismt = 1 if system s provides coverage for mission task m in time period t, 0 

otherwise, for s ∈ S, m ∈ M, t œ T. 

- a set of binary parameters that indicate the set of time periods that a system may be 

procured to cover a mission task for a particular coverage period; therefore, Pmjt = 1 if 

in time period t œ T, a system that covers mission task m may be procured to provide 

coverage for the jth coverage period, 0 otherwise, for m ∈ M, j = 1,2,…,nm,  t ∈ T.   

- a set of binary parameters that indicate the set of time periods in which a system may be 

administered to satisfy any coverage requirement for mission task m; therefore, Qmt = 1 

if in time period t œ T, a system may be procured to satisfy any coverage requirement 
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against mission task m œ M, 0 otherwise, (i.e., for any mission task m œ M and time 

period t œ T, Qmt = 1 if and only if Pmjt = 1 for some coverage period j = 1,2,…,nm.), 

- a set of integer parameters that indicate the minimum number of coverage periods a 

system is required for mission task m œ M through time period t œ T; denoted mmt.   

Question: Does there exist a set of systems from S that can be procured over time periods 

T such that these systems provide coverage against all the mission tasks in M, at a total 

cost no greater than B (i.e., do there exist values for the binary variables Xts, t ∈ T, s ∈ S, 

where Xts = 1 if system s is procured in time period t, 0 otherwise, such that for all m ∈ 

M, Σt∈TΣs∈S Pmjt Xts Ismt > 1 for  j = 1,2,…,nm and Σt=1,2,…,t’Σs∈S Qmt Xts Ismt > for all 

time periods  t’

tmm ′

 œ T and Σt∈TΣs∈S  cs Xts < B)? 

Clearly, the computational complexity, algorithms, and heuristics for VFSLBP may be 

extended to AFALBP. 
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